Permit # SD-____

TOWN OF COLCHESTER APPLICATION FOR FINAL PLAT REVIEW

All information requested on this application must be completed in full. Failure to provide the requested information either on this application form or on the sketch plan will result in your application being rejected and a delay in the review before the Development Review Board.

- 1) OWNER OF RECORD (Name as shown on deed, mailing address, phone and fax #)_______ Ireland Industries, Inc. PO Box 2286, S. Burlington, VT 05407 ph: (802) 863-6222, fax: (802) 860-1528______
- 2) APPLICANT (Name, mailing address, phone and fax #)______ Ireland Industries, Inc. PO Box 2286, S. Burlington, VT 05407 ph: (802) 863-6222, fax: (802) 860-1528
- 3) CONTACT PERSON (Name, mailing address, phone and fax #)______ Robin Jeffers, Ireland Industries, Inc. PO Box 2286, S. Burlington, VT 05407 ph: (802) 316-6004
- 4) CONSULTANT INFORMATION (Name, mailing address, phone and fax #)
 <u>Michael Buscher, T.J. Boyle Associates, 301 College St., Burlington, VT 05401 ph: (802) 658-3555</u>
 <u>David Marshall, Civil Engineering Associates, 10 Mansfield View Ln., S. Burlington, VT 05403 ph: (802) 864-2323</u>
- 5) PROJECT STREET ADDRESS: 242 Severance Road
- 6) TAX MAP & PARCEL #(can be obtained at Assessor's Office) <u>Tax Map 4</u>, <u>Parcels 30-1</u>, <u>30-2</u>, <u>30-3</u>, <u>30-5</u>, <u>30-6</u>, <u>30-7</u>, <u>30-8</u>, <u>30-10</u>, <u>30-11</u>, <u>30-12</u>, <u>30-13</u>
- 7) PROJECT DESCRIPTION
 - a)Please note if new lots are being created and whether or not the request is for a regular subdivision, planned residential development, or planned unit development: <u>This application is for a planned unit Development that will create new lots.</u>
 - b) Existing Uses on Property (including description and size of each separate use) <u>Seasonal snack bar</u>, <u>agriculture/farming</u>, driveway, abandoned greenhouse
 - c)Proposed Uses on property (include description and size of each new use and existing uses to remain) The proposed development includes 197 residential dwelling units, 13,110 sf of retail space, 34,040 sf of office commercial space, 4,050 sf of restaurant space, and 4,275 sf of daycare space.
 - d) Total building square footage on property (proposed buildings and existing buildings to remain) <u>No existing buildings will be retained. Proposed buildings will comprise an approximate total of 55,000 gross sf</u> <u>of office/commercial, retail, restaurant, and daycare space. 197 residential units are proposed with an</u> <u>approximate total of 250,000 sf of finished space.</u>

- e) Height of building & number of floors (proposed buildings and existing buildings to remain, specify if basement and mezzanine) <u>The development incorporates a mix of buildings to accompany the mix of uses proposed for the site.</u> Buildings 1, 2, 8, and 10 will be single story structures with heights ranging from 16' 20' in height. Building 3 will be a 2-1/2 stories with a maximum height of 34' 36'. Building 4 will be 1 story with the appearance of containing a second floor in a half story. Building 4 will have a maximum height of 24' to 26'. Buildings 9 will be 2 stories and 32'-34' in height. Buildings 5, 6, 7, and 11 will be 3 story residential buildings with a maximum height of 40' and will all contain a parking level in the basement. The 33 town house units will be 2 stories (26'-30' height) and may have basements.
- f) Number of residential units (if applicable, new units and existing units to remain) <u>There are a total of 197</u> proposed residential units.
- g) Number of employees & company vehicles (existing and proposed, note office versus non-office employees): <u>It</u> is anticipated that there will be 136 office/commercial employees, 14 retail employees, 8 daycare employees, and 24 restaurant employees. At this point no company vehicles are anticipated.
- h) Other (list any other information pertinent to this application not specifically requested above, please note previous approvals and if the Overlay Districts are applicable): <u>This development was previously approved</u> <u>through final plat and site plan in 2007, with subsequent extensions to that approval. The current application includes minor adjustments, but largely represents the previously approved development.
 </u>

8) LOT INFORMATION

- a) Existing Lot Size: <u>33.7 acres</u> b) Acreage to Be Disturbed: <u>approximately 21.5 acres</u>
- c) Number of Lots Being Created (please also note lot size): <u>The current application will result in the creation</u> of 40 lots, in addition to a public right-of-way dedication. The size of each lot is noted on the proposed subdivision sketch.
- d) Building Coverage: Existing <u>0</u>% Proposed <u>9.8</u>%
 e) Overall Coverage (building, parking, outside storage, etc) Existing <u>4.8</u>% Proposed <u>35.6</u>%
 f) Front Yard Coverage (along each street) Existing <u>TBD</u>% Proposed <u>TBD</u>%
 g) Building Setbacks: Front <u>11 ft</u> Rear <u>67 ft</u> Side <u>88 ft</u> <u>Side 83 ft</u> *Setbacks for overall PUD
 h) Parking Lot Setbacks: Front <u>30 ft</u> Rear <u>13 ft</u> Side <u>40 ft</u> Side <u>28 ft</u>

i) Distance From Shoreline (95.5' elevation): <u>n/a</u>

9) ESTIMATED PROJECT COMPLETION DATE 2029

10) TYPE OF EXISTING OR PROPOSED ENCUMBRANCES ON PROPERTY (easements, covenants, leases, rights of way, etc.) An existing 15' access right-of-way easement exists for parcel 30 tax map 4, recorded in vol. 128 page 395. There are no other existing encumbrances. Post development, the existing right-of-way for parcel 30 will be eliminated and that parcel will have frontage on a public road right-of-way. Several utility easements will be created, some to be conveyed to the town, others to private utility companies. There will also be home owner covenants, leases, recreation easements, etc...

11) PROPOSED EXTENSION, RELOCATION, OR MODIFICATION OF MUNICIPAL FACILITIES (sanitary sewer, water supply, streets, storm drainage, etc.) <u>Sanitary sewer and water supply will connect into</u> existing lines and will not require extensions, relocation or modification of existing municipal facilities outside of the project site. Two curb-cuts onto Severance Road are proposed and a total of +/- 3,400 linear feet of proposed public streets are shown. Storm water will be handled on-site

12) PUBLIC IMPROVEMENT, ROAD, & UTILITY INFORMATION

- a) Will municipal sewer be used? Yes If yes, has an allocation been requested? Yes
- b) For on site wastewater disposal describe: <u>n/a</u>
- c) Has the Wastewater Official been contacted to review soil test pits? <u>n/a</u>
- d) Will municipal water be use? Yes If no describe water supply: n/a
- e) Linear footage & width of each road/driveway proposed: <u>Public Roads</u>: <u>There is a total of +/-3,400 linear</u> <u>feet of proposed public road</u>. <u>Primary roads ar 28' wide</u>, <u>secondary roads are 26' wide</u>.

There is a total of 7 off-street parking areas with associated access drives. All access drives will be a minimum of 20' in width. Private driveways access single car garages on the 33 townhouse units.

- f) Corner sight distance for each road/driveway: <u>Site distances for the two proposed entrances to Severance Road</u>
 <u>West driveway:</u> looking west: +/- 1,400' looking east: +/- 1,200'
 <u>East driveway:</u> looking west: +/- 1,800' looking east: +/- 850'
- g) Do proposed roads include sidewalks? Yes, sidewalks are proposed along at least one side of all roads.

13) COST ESTIMATES

- a) Building (including interior renovations): \$ 1,612,241 (only includes streets, utilities, storm water pond)
- b) Landscaping: \$211,355 (only includes street trees and common lot plantings)
- c) Describe Landscaping & Other Site Improvements: Landscape plantings will include a variety of evergreen and deciduous trees, shrubs, ground covers, and perennials. Current plans (see sheets L-2.0, L-2.1, & L2.2) detail plantings for streets, shared parking areas and community parks and greens. A network of public roads, sidewalks, recreation paths, and nature paths will be built as well as outdoor community gathering spaces with benches, tables, play equipment, and other passive and active recreational elements,

14) ESTIMATED TRAFFIC

a) Average daily traffic for entire property (in and out): <u>see attached TIS</u>

- b) A.M. Peak hour for entire property (in and out): <u>see attached TIS</u>
- c) P.M. Peak hour for entire property (in and out): see attached TIS
- 15) PEAK HOURS OF OPERATION: <u>The project is a planned mixed-use development</u>. Residential use will <u>be 24 hours a day, commercial uses (including office, retail, and services) will generally take place between the hours of 6 a.m. and 9 p.m.</u>
- 16) PEAK DAYS OF OPERATION: <u>The project is a planned mixed-use development and will include activities 7</u> <u>days a week.</u>

17) FINAL PLAT PLAN AND FEE

A final plat plan shall be submitted which shows the information listed on Exhibit B attached. A final plat plan application fee shall be paid to the Town at the time of submittal (see Exhibit B). In accordance with Colchester's Fee Ordinance Chapter 6 $\frac{1}{2}$ - 4 (9) applicants for all permits are responsible for costs of reviews conducted by third-party consultants/experts requested by the Town, plus a ten (10) percent administrative fee.

Please submit one paper copy and a digital copy of the application in pdf (file not exceeding 20mb) via https://elms.colchestervt.us/egov/. If online submittal is not feasible, submissions will be accepted via CD/ DVD. Application forms, plans, and supporting documents shall each be separate pdfs and plans shall be submitted as a set whenever feasible. Files shall be named the address of the property and the type of document followed by the year (i.e. 205RooseveltHgwyApp15). Each file name shall be unique with no spaces and characters shall be numbers or letters (no characters such as hyphens, #, &, or *). All pdfs shall be at least at 300dpi, color, and to scale if a plan, elevation, or similar document.

I hereby certify that all the information requested as part of this application has been submitted and is accurate to the best of my knowledge. *Please be aware that sketch plan review is not a formal or appealable action. The DRB will review your sketch plan application under the regulations in effect at the time of your application. Should the Selectboard thereafter warn or adopt amendments to the Development Regulations before you file your application for preliminary (major) plat or final (minor) plat approval, that application will be reviewed under the amended regulations.*

18) FINAL PLAT REVIEW CRITERIA NARRATIVE

A narrative description of how the proposed project meets the criteria of Article Nine of the Development Regulations shall be submitted with this application.

I hereby certify that all the information requested as part of this application has been submitted and is accurate to the best of my knowledge.

SIGNATURE OF PROPERTY OWNER SIGNATURE OF APPLICANT

By the land owner signature, the land owner is authorizing the applicant to act on their behalf.

Check this box if the consultant listed is authorized to act on behalf of the applicant and land owner.

Check this box if the contact person listed is authorized to act on behalf of the applicant and land owner.

Do not write below this line	
DATE OF SUBMISSION:	
FEE PAID:	
I have reviewed this sketch plan application and find it to be: Komplete	□ Incomplete
Zoning Administrator or Designee	Date

EXHIBIT A ADJOINING PROPERTY OWNER INFORMATION

(please use the interactive map at Colchestervt.gov for info & try to include direct abutters as well as adjacent properties along the shoreline within the area of affect as well as across the street)

utong the shore	enne within the area of affect as well as act	
Tax Map 3, Parcel 30 State of Vermont 103 So. Main Street, 10 North Waterbury, VT 05676	Tax Map 1, Parcel 19 United State of America Camp Johnson Colchester, VT 05446	
Tax Map 3, Parcel 31 Colleen Robenstein Box 171 Winooski, VT 05404	Tax Map 8, Parcel 37-2 Malcolm F. Severance 2179 Roosevelt Highway Colchester, VT 05446	
Tax Map 4, Parcel 30 Munther Thomas Balaki 1508 Northeast 110 th Street Miami, FL 33161	Tax Map 8, Parcel 38-2 Malcolm F. Severance 2179 Roosevelt Highway Colchester, VT 05446	
Tax Map 4, Parcel 30-4 Malcolm F. Severance 2179 Roosevelt Highway Colchester, VT 05446	Tax Map 8, Parcel 38-1 Joyce Sweeney, Malcolm Severance, Willa Paiton, Jean Lawrence 1558 Main Street Colchester, VT 05446	
Tax Map 4, Parcel 31 Malcolm F. Severance 2179 Roosevelt Highway Colchester, VT 05446	Tax Map 8, Parcel 40 Ray L Wells Jr. (or current resident) 385 Severance Road Colchester, VT 05446	
Tax Map 4, Parcel 32 Wright & Morrissey Inc. PO Box 421 Burlington, VT 05402	Tax Map 8, Parcel 41 Bruce and Vicky Wells (or current resident) 425 Severance Road Colchester, VT 05446	
Tax Map 4, Parcel 32-1 Pheasant Woods, Inc. c/o Denise M. Longchamp 18 Pheasant Woods #101 Colchester, VT 05446	State of Vermont Agency of Transportation District #5 P.O. Box 168 Essex Jct., VT 05453	
Tax Map 4, Parcel 33 Town of Colchester P.O. Box 55 Colchester, VT 05446		

EXHIBIT B

FINAL PLAT

The following information must be shown on the plat plans meeting Article Nine of the Development Regulations. Failure to provide the following information will result in your application being rejected and a delay in the review before the Development Review Board.

- Complete survey of property by a licensed land surveyor drawn to scale (20 ft. is preferred).
- Name, license number, seal, and contact number of licensed land surveyor & date prepared.
- Survey data (acreage, property lines, zoning boundaries, watercourse, base flood elevation, etc.)
- Location of easements, public lands, r.o.w.s, sidewalks, and public or private street (w/names)
- Contours at two (2) foot elevation intervals (existing and finished)
- Boundaries and area of all abutting properties
- Building elevations & building level floor plans
- Proposed landscaping schedule (number, variety and size)
- Location of streets, abutting properties, fire hydrants, existing buildings, existing landscaping
- Location of proposed hydrants and/or building sprinkler hook-ups and fire lanes.
- Zoning boundaries
- Number and location of parking spaces (including handicapped spaces)
- Location of septic tanks, fields, & lines and/or septic test pit, and percolation information
- Lot coverage information: Building footprint, total lot, and front yard
- Numerical and graphical scale, date last revised, and north arrow.
- Exterior lighting details (cut sheets). All lights should be down casting and shielded.
- Dumpster or trash area locations
- Bicycle rack
- If restaurant is proposed, provide number seats and square footage of floor area provided for patron use but not containing fixed seats
- Area for accumulating snow
- Details of all proposed bridges or culverts.
- Location of temporary markers.
- Water line location (existing & proposed), fire flows, and pressures
- Details of drainage systems & stormwater facilities
- Physical features (streams, wetlands, vegetative cover, etc.)
- Existing highway geometries including access points near project
- Existing & proposed entrances and curb cuts (dimensions, widths, & turning radii)
- Sight distance in both direction of all driveway intersections
- Traffic level of service/capacity analysis for existing/future conditions
- Loading areas & truck circulation patterns
- Existing & proposed sidewalks, recreation paths, and pedestrian walkways
- A list of waivers desired (if any).
- Development timetable (including number of phases and start and completion dates).
- Location & size of open spaces reserved for recreation or conservation
- Location & type of restricted land (i.e. rights-of-way, easements, open space covenants, etc.)

APPLICATION FEE

□ \$355

CIVIL ENGINEERING ASSOCIATES, INC.

10 Mansfield View Lane South Burlington, VT 05403 Phone: 802-864-2323 Fax: 802-864-2271 E-Mail: dmarshall@cea-vt.com

November 6, 2019

Ms. Lisa Riddle, Zoning Administrator Town of Colchester 781 Blakely Road Colchester, VT 05446

Re: Ireland Industries, Inc. Final Plat Application for a Planned Unit Development Severance Road – SE Quadrant Site

Dear Ms. Riddle:

We would like to thank the Develop Review Board and yourself for the rapid processing of the Preliminary Plat application and the creation of the Findings of Fact and Order for the proposed Sunderland Farms Community project.

To assist the Town in reconciling the attached Final Plat application materials with the requirements set forth in the Order, we have inserted below the applicable narrative from the Order and have inserted in bold font responses on where the information can be found.

Please note that this application does not include any proposed site plan application related components and it remains a request for subdivision and supporting infrastructure approval.

ORDER

"...the Colchester Development Review Board hereby approved the preliminary plat application"... with the following conditions:

- 1. All previous approvals and stipulations which are not superseded by this approval shall remain in effect. Acknowledged.
- 2. The Board granted the following PUD modifications:
 - a. A 44% reduction vs. a required 50% frontage buildout for a B street.
 - b. Lot #14 a reduction in setback of 7' vs. required minimum of 10'.
 - c. Increase in lot width:

Ms. Lisa Riddle Page 2 of 9 November 6, 2019

B Street

- Lot 21 Required 150', Granted 212'
- Lot 20 Required 150', Granted 158'
- Lot 19 Required 150', Granted 212'
- Lot 23 Required 150', Granted 228'
- Lot 3 Required 150', Granted 193'
- Lot 5 Required 150', Granted 178'

C Street

- Lot 7 Required 120', Granted 128'
- Lot 8 Required 120', Granted 122'
- Lot 10 Required 120', Granted 124'

d. Decrease in lot depth:

B Street

- Lot 20 Required 80', Granted 38'
- Lot 3- Required 80', Granted 22'
- Lot 5- Required 80', Granted 62'
- Lot 6- Required 80', Granted 64'

C Street

- Lot 10 Required 80', Granted 48'
- Lot 9 Required 80', Granted 65'
- Lot 18 Required 80', Granted 78'

Lot 10 on a C Street Minimum Front Setback - Required 3', Granted 0' Minimum Side Setback - Required 3', Granted 1'

Lot 14 on a C Street

Minimum Setback for Parking lot 10' Required, Granted 7' Acknowledged. The applicant asks that these same waiver requests be carried forward with this final plat application.

- 3. The Board approved the following phasing plan: These are depicted on Sheet C1.6 Phasing Plan.
 - a. Year 2020-2021: Phase A includes the construction of Shea Drive off of Severance Road and turns into Stuart Avenue before Shea Drive becomes the C Street. Pegs Cove is also included in Phase A off of Stuart Avenue.
 - b. Year 2021-2022: Phase B involves constructing Dylan Avenue off of Severance Road and turning to connect to Stuart Avenue before it becomes a C Street.
 - c. Year2022-2023: Phase C is to develop the C Street by building out and connecting Shea Drive to Dylan Avenue Please note that the applicant seeks permission to complete infrastructure quicker than this schedule if conditions enable.

Ms. Lisa Riddle Page 3 of 9 November 6, 2019

- 4. Site Plan approval will be required for each building and uses will be approved at that time taking into consideration street type and floor proposed for occupancy. **Acknowledged.**
- 5. No block on an A or B Street shall exceed total perimeter length of 1,600 feet. Any block site on an A or B Street longer than 400 feet shall be broken up by a right of way allowing at minimum through pedestrian connections. No lots exceed 1,600 linear feet and no building approaches 400 feet in length. Acknowledged. The block width south of Stuart Avenue, at its widest point in the east-west direction We recommend that the last sentence be revised to state "No lots exceed 1,600 linear feet and no blocks approach 400 feet in length."
- 6. All utilities shall be underground. Acknowledged as that is what is proposed.
- 7. All hydrants shall have a 4" stortz. This noted has been added to the hydrant detail on Sheet C5.-Water Details
- 8. Street lights are to be turned over to the Town for ownership and maintenance and shall not be rental units owned by the power provider. To the extent possible, place metering location and/or provide landscaping to shield from street view. Sheet C3.5-Electrical Layout Plan shows the site lighting secondary distribution and the two proposed metering locations. Landscaping Sheets L2.1 to L2.2 depicts the proposed screening at each of the meter pad locations.
- 9. The applicant shall provide the following as part of the final plat submittal:
 - a. The Fire District shall review and approve the proposed water design. We have attached the comments from Fire District #3. We have provided responses to each one of the comments within the attached document entitled "Response to Colchester Fire District #3 review comments" Documentation from Water & Fire District 3 in regards to the use of PVC C900, DR 14 pipe for water mains. This is embedded within the Fire District's attached review letter.
 - b. Details regarding the necessary tracer wires including access points for future location. The requirement for tracer wire is shown on the typical water trench detail on Sheet C5.1-Water Details and the tracer wire box locations have been depicted on the site utility plans (Sheets C3.1, C3.2 and C3.3).
 - c. Updated table indicating sanitary sewer allocation needs based on the proposed subdivision. The Impact Statement has been attached and the sewer summary can be found on the last page.
 - d. Details on how compacted areas will be restored in accordance with Section 9.051. Actually this section of the regulations does not speak to compaction. A better citation is Article 10. Section 10.04 Landscaping, Screening, & Street Trees, D. Site Restoration. Grading or seeding shall be required to restore the condition of any portion of a site that is disturbed during construction. A plan shall be provided for the stockpiling and restoration of topsoil removed or disturbed during construction, and any soil compaction within pervious areas of the site shall be repaired in accordance with the Vermont Department of Environmental Conservation Stormwater Program's

guidelines. These requirements are outlined on Sheet C6.9 EPSC Specifications and Details.

- e. Provide draft Declaration of Covenants, Easements, Restrictions and Liens. These are attached in the "legals" subdirectory of the PDF submittal.
- 10. The applicant shall provide revised plans depicting the following as part of the final plat:
 - a. Street tree plans to provide missing information including common name, botanic name and height or caliper at delivery. This has been corrected on Sheet L2.0.
 - b. Pedestrian ways and multi-use path connecting the project internally and to Severance Road. Sheet L1.1-Recreation, Amenity & Circulation Plan depicts the proposed shared use path and sidewalk connections both internally and to Severance Road.
 - c. All proposed easements. These are attached in the "legals" subdirectory.
 - d. The correct Metroscape Model is the 55 watt version with 48 LED lights rather than 32. The codes for color and photocell also must be included as BKTX and PHEX, respectively. Philips/Lumec also requires the intended line voltage to be included. For instance, if 120 volt current is being used, the Model should read as follows: MPTR-55W48LED-4K-G2-LE5-120-PHEX-BKTX. The requested photocell code change is not accurate and refers to outdated ordering information. The correct code for Photocell per the manufacturer's feedback is PH8. The Metroscape Model information has been corrected on Sheet L3.0.
 - e. The highlighted banner arm is not the standard used for developments in Colchester. The standard mount is a sliding 20" arm that can be shifted from side to side and is listed as "BAS20". Philips/Lumec typically will ask for the mounting height, which should be indicated as 12" below the lamp fitter or attachment point. Also missing from the post description is the "FS1" code for provision of an inline fuse in the base of the post. This has been corrected on Sheet L3.0 a note has been added to indicate mount 12" below fitter.
 - f. Provide electrical plans including wiring layout with power supply stanchion (meter base and shutoff) and all necessary conduit and junction boxes. Include overlapping easement areas for Town and Utility at metering location. The proposed secondary wiring layout is shown on Sheet C3.5-Electrical Layout Plan. The details for the power board/meter/disconnect is shown on Sheet C5.0-Sewer & Electrical Details.
 - g. Plan sheets referenced in Cover Letter (referred to as "C.3.X") were not found and shall be provided at final plat. The Sheet C3.x series (Site Utility Plans) is attached with this submittal.
 - h. Revise Sheet C-3.13 to remove old overhead light symbols (mostly along Stuart.) Provide missing power connection for three lights along Shea between Severance and Thomas. Provide easement to Town outside of ROW at west end of Stuart. Provide junction box where three conduits meet on east side of Dylan near 106+75. This information is depicted on Sheet C3.5-Electrical Layout Plan.
 - i. Revise the placement of cluster mailbox to provide ADA compliant access to all users and also not increase maintenance operations, to the extent practicable. The revised mail box layout is shown on Sheet C2.2-Southeast Grading & Drainage Plan with direct connection to the back of the sidewalk system ensuring ready ADA access.
- j. The specifications of the proposed active amenities shall be provided for review and approval by the Director of Parks and Recreation as appropriate for the size and demographics of the

development. These are being provided again for distribution to the Department of Parks & Recreation. The locations of the proposed active amenities can be found in this submittal package on Sheet L1.1. Details for the proposed amenities can be found on sheet L4.2.

- k. Provide the number of stories for each building in order to determine fire access. This information is depicted on Sheet C1.1-Conceptual Future Build-out Plan.
- 1. Revise to show metering locations more centrally located and try to limit to one or two locations. **This information is depicted on Sheet C3.5-Electrical Layout Plan.**
- 11. The public right of way shall be delineated with 4" x 4" concrete monuments at all property corners as well as points of curvature and tangency proposed along existing or proposed public streets. This is depicted on Sheet PL-2 (Amended Plat of Subdivision).
- 12. All new construction shall meet the Vermont Residential and Commercial Energy Code requirements. Acknowledged.
- 13. An Ordinance amendment shall be completed along with Stop Sign Warrant Analysis and Speed Study prior to acceptance or transfer of the public road to the Town. Acknowledged.
- 14. The street lights shall be in accordance with the Colchester Public Works Specifications and Standards. The street light disconnect shall be located outside of the public ROW. This is depicted on Sheet C3.5-Electrical Layout Plan. An easement shall be given to the power provider for the placement and maintenance of the street light disconnect. This is depicted on Sheet PL-2 (Amended Plat of Subdivision) Sufficient evergreen screening shrubs shall be provided such that the street light disconnect is not visible from the Street/Road and the screening shall in no way interfere with necessary minimum sight distances. This is depicted on Sheets L2.1 and L2.2. All proposed street lights within public rights-of-way shall be constructed so as to become the property of the Town upon acceptance of the street. Acknowledged. Should the Public Works Specifications for street lights change prior to issuance of the building permit, the applicant shall amend the plans to reflect the new street lighting standard. Acknowledged.
- 15. The stormwater maintenance agreement shall be noted on all individual lot deeds. Acknowledged. Upon acceptance of the roadway by the Town, the Town and the Developer/HOA will become Coapplicants on a General Permit 3-9015. Acknowledged, but it should be recognized that this project's stormwater authorization is outlined in 4940-9010. It will be the responsibility of the Developer/HOA to initiate the process for co-applicant addition, usually at the next permit renewal cycle. Acknowledged. The Town of Colchester will only be responsible for the stormwater infrastructure constructed within the Town Right-of-Way. Acknowledged. The Developer/HOA will be responsible for all stormwater infrastructure constructed outside of the Town Right-of-Way including but not limited to private driveways, walkways, and roof areas. Acknowledged.
- 16. Post development stormwater runoff flows shall be equal to or less than pre-development stormwater runoff flows for a minimum of 25-year, 24-hour storm event. The project has been designed so as to provide a peak flow reduction for not only the 25-year storm but also the 100-year storm event,

Ms. Lisa Riddle Page 6 of 9 November 6, 2019

- 17. The Developer shall be responsible for all stormwater infrastructure constructed outside of Town Rights-of-Way and the impervious surface associated with private driveways, roofs, and parking areas. Acknowledged.
- 18. Upon acceptance of the roadway by the Town, the Town and the Developer/HOA will become Co-applicants on a General Permit 3-9015. Acknowledged, but it should be recognized that this project's stormwater authorization is outlined in 4940-9010. It will be the responsibility of the Developer/HOA to initiate the process for co-applicant addition, usually at the next permit renewal cycle. Acknowledged.
- 19. If footing drains are proposed to be connected to the Town's storm sewer, prior to connection, the property owner or applicant shall execute and record an easement document with the Town Clerk that can be provided by Public Works upon request. **Acknowledged.**
- 20. The stopping of traffic on adjacent public roadway shall not be permitted without necessary traffic control measures in accordance with MUTCD including approach signing and flagmen. Acknowledged. Deliveries and hauling operations shall be coordinated not to occur during times of peak traffic volumes (7:30am -8:30am & 4:30pm 5:30pm.) Acknowledged.
- 21. Prior to recording the Final Plat plan, the applicant shall submit a copy of the survey plat in digital format (Colchester Plane Coordinate System) meeting the Town of Colchester "Specifications for the Submission of Survey Plats, Final Plat Plans & Boundary Line Adjustments in Digital Form". Acknowledged. Upon certification by the Chairman or Clerk, the Mylar copy shall be submitted to the Town Clerk to be filed in the Town Land Records. Acknowledged.
- 22. The Final Plat plan shall be recorded in the Town of Colchester land records within 180 days or this approval is null and void. Acknowledged. The final plat plan shall be in the form of a Mylar copy (18" by 24") depicting meets and bounds survey of the approved subdivision and shall identify a minimum of three witness monuments located, or to be located on, the property with boundaries referenced to the Colchester Plane Coordinate System (coincident with the Vermont Plane Coordinate System) based on the 1983 North American Datum. This is depicted on Sheet PL-2 (Amended Plat of Subdivision). Such monuments shall be established at a minimum survey error of closure of 1:10,000. Acknowledged. All plans to be recorded shall meet the requirements of the Town of Colchester's "Specifications for the Submission of Survey or Boundary Line Adjustment Mylars to be recorded in the Town Land Records" Policy. The plan shall be signed by the Development Review Board Chair or Clerk prior to recording. Acknowledged.
- 23. Prior to the issuance of any Building Permits the property front line corners for each lot shall be established with witness stakes or iron pins. **Acknowledged.** Prior to issuance of a Certificate of Occupancy said property line corners shall be established with permanent monumentation. **Acknowledged.**

Ms. Lisa Riddle Page 7 of 9 November 6, 2019

- 24. Prior to recording the Plat for the proposed development the applicant shall submit and receive approval of the following:
 - a. Executed warranty deeds for all rights-of-way and easements to be dedicated to the Town, Acknowledged. and a Certificate of Title showing the title to be free and clear of all encumbrances. Acknowledged. All proposed deeds, easements, association documents and Certificate of Titles shall be submitted to the Planning and Zoning Department in digital Word format. Deeds and certificates shall be approved by the Town Attorney. Approval of deeds by the Town does not constitute acceptance. Acknowledged.
 - b. A Quitclaim Easement Deed for Private Utility (Across Public Road) and a Maintenance Agreement will be required for all locations where private sewer force mains cross under the proposed public road, for community septic system, open space and common areas and shall be reviewed and approved by the Town's Attorney. **Acknowledged.**
 - c. Stormwater calculations and a copy of the Individual Stormwater Discharge Permit application shall be submitted to the Town Engineer for review. **Acknowledged.**
 - d. Submit all covenants, homeowner's documents, legal restrictions, including but not limited to maintenance of recreation areas, maintenance, ownership, restrictions, conservation and upkeep of open space, restricted no-build and no cutting areas and proposed Bylaws to the Town Attorney for review and approval **Acknowledged.** The Declaration of Bylaws shall clearly state that the Association shall own and maintain proposed common open space and recreational amenities. The Association shall be structured so that the proposed Association Board has the authority to convey common land to the Town without signoff from each Association member. **Acknowledged.**
 - e. The applicant shall submit and receive all necessary State Wastewater and Potable Water Supply Permits for the project. Acknowledged.
- 25. Prior to issuance of a building permit:
 - a. Fire District Two (**Three**?) shall review and approve the water service to the project. Acknowledged.
 - b. A landscape improvement agreement shall be provided prior to the issuance of a permit for the public infrastructure. **Acknowledged.**
 - c. A public improvement agreement shall be required prior to each phase. Acknowledged.
 - d. Obtain a 3-9015 (**3-9010 permit acquired**) and 3-9020 General Permits for stormwater discharge from the State of Vermont.
 - e. The Developer/Homeowner's Association (HOA) shall enter into a stormwater maintenance agreement with the Town. The stormwater maintenance agreement shall be noted on all individual lot deeds. **Acknowledged.**
- 26. Prior to the issuance of a building permit for the proposed development and after the requirements of conditions #24 and #25 have been met and all requisite legal documents recorded (including but not limited to offers of dedication and easements), the applicant shall complete a pre-construction meeting with Town Staff. The applicant is responsible for ensuring the project engineer and contractors attend this meeting. Acknowledged.

27. A sign application must be submitted by the applicant and must be reviewed and approved by the Zoning Administrator prior to the erection of any signs. No signage is approved at this time. **Acknowledged.**

28. Prior to issuance of a Certificate of Occupancy:

- a. Street name signs shall be installed. Acknowledged.
- b. Prior to the issuance of a Certificate of Occupancy the applicant shall file a Residential Building Energy Standards (RBES) Certificate for each new residence in the Town Clerk's Office within 30 days of completing the project. **Acknowledged.**
- c. Each residence or commercial building shall have the E-911 number of the building displayed so as to be seen from the road if a porch light is on. If the house cannot be readily seen from the road the number must also be placed at the start of the driveway such as on a mail box. Acknowledged.
- 29. In accordance with Colchester's Fee Ordinance Chapter 6 ¹/₂ 4 (9) the applicant is responsible for payment of all permit fees as well as for the costs of reviews conducted by third-party consultants/experts requested by the Town. All fees shall be paid prior to or at the time of obtaining a building permit. Acknowledged.
- 30. Per Section 18-23 (b) of the Colchester Code of Ordinance: Earthwork shall be scheduled for completion and the site stabilized no later than October 15th. By the end of the growing season, perennial cover shall be established and non-vegetated protection measures installed by October 15. There shall be no land disturbance activities allowed between the dates of October 15th and April 30th. A waiver of this requirement may be granted by the Director of Public Works, or his designee, following the submittal and approval of a winter construction erosion control plan consistent with the Vermont Handbook for Soil Erosion and Sediment Control on Construction Sites. Acknowledged.
- 31. No excavation, site development, or building construction shall occur until the applicant has obtained all necessary permits from the Town of Colchester in accordance with the Building, Development, Health and other applicable ordinances that may be required. Acknowledged.
- 32. Disposal of excavated earth material, stumps, brush, or other material removed from this site shall take place at a location properly permitted for such activity. **Acknowledged.** Placement of fill material in Colchester requires a permit to be obtained by the owner of the land to be filled. Improper placement of material from this site shall constitute a violation of this approval. **Acknowledged.**
- 33. By acceptance of these Findings of Fact and Order the Permittees agree to allow representatives of the Town of Colchester access to the property covered by the approval for the purpose of ascertaining compliance with all local regulations and with this Order. Acknowledged.
- 34. The project shall be constructed and operated in accordance with the submitted application documents, the stamped approved plans, the Findings of Fact and Order, the Colchester

Development Regulations. There shall be no change in the proposed use or approved plans without prior approval of the Town. Acknowledged. The Development Review Board reserves the right to review and issue supplementary Findings of Fact and Order for any substantial change in the project approved herein. Acknowledged. Any unauthorized change from the approved plans shall be grounds for revocation of the Order and approval pursuant to 24 V.S.A. § 4455, as may be amended. The Town reserves the right to petition the Environmental Division of the Vermont Superior Court for revocation of this approval and any permits granted hereunder, or to seek other enforcement action, if the Town believes the applicant/permittee has violated the terms of approval, or has obtained approval based on a misrepresentation of material fact. Acknowledged.

35. The final plat application shall be submitted within 12 months or said approval shall become null and void. **Complied with.**

This completes our summary of the supplemental materials being submitted for the Town's review on this project. If you should have any questions, please feel free to contact me at 864-2323 x310 or at <u>dmarshall@cea-vt.com</u>.

Respectfully,

David S. Marshall, P.E. Principal Engineer

Attachments:

Application Application Fee Fire District #3 Review Letter FDC #3 Response Letter Impact Statement (W&S Summary on Pg 2) Draft Declaration of Covenants, Easements, Restrictions and Deeds Final Plat Submittal Requirements Summary Abutters List (embedded in application form) Traffic Impact Study Lot Summary Spreadsheet Fire Flow Availability – Water Supply Engineers Report Stormwater Calculations

Cc: R. Jeffers, CEA File 14134.00

P:\AutoCADD Projects\2014\14134\3-Permitting\1-Local Applications\3-Final\Riddle Cover Letter 11-5-19.doc

E. Preliminary and Final Plat Submittals. In the case of major subdivisions, a final plat application shall be submitted after the approval of the preliminary plat application. Preliminary and final plat applications and plans, drawn to scale, submitted shall comply with Appendix G herein and include the following information for the Administrative Officer to deem the application complete and ready to send to the Development Review Board for its review:

1. Existing conditions plan and data:

- (a) A list of the owners of record of abutting properties, which may be generated by the Assessor's Department or by the applicant. A list of abutters is embedded within the application form.
- (b) Boundaries of existing zoning and overlay districts on the subject property and adjacent zoning and overlay district boundaries. This is depicted on Sheet PL-2 (Amended Plat of Subdivision).
- (c) Area and boundaries of the property, building or setback lines as required in this chapter, and lines of existing streets and adjoining lots, as shown on a survey. These are depicted on Sheet PL-2 (Amended Plat of Subdivision) and Sheet PL-3.
- (d) Reservations, easements and areas dedicated or to be dedicated to public use shall be shown. None of these conditions existing on the pre-existing lots.
- (e) Lot dimensions and survey data, and section and lot numbers of the subject property. The preferred scale shall be not less than one (1) inch equals thirty (30) feet. Due to the size of the involved lands this scale is 1" = 80' as shown on Sheet PL-1 (Existing Boundaries, Amended Plat of Proposed Subdivision).
- (f) Such map shall show the applicant's entire property in a closed bound survey, adjacent properties, streets within two hundred (200) feet of the site, approximate location and dimensions of all existing structures, and location of all existing structures on adjacent properties and within one hundred (100) feet of the site boundary. At the discretion of the Administrative Officer the required area of the site plan shall be increased. This information is shown on Sheet PL-1 (Existing Boundaries, Amended Plat of Proposed Subdivision).
- (g) Location of watercourses, waterbodies, wetlands, floodplains, and floodplain boundaries as determined by the Federal Emergency Management Agency or as mapped by the Town of Colchester, watercourses, wetlands, rock outcrops, wooded areas, existing vegetation, and other significant natural features on the site. **This information is shown on Sheet C-1.0-Existing Conditions Site Plan.**
- (h) Topographic contours and profiles as needed. Existing and proposed contours should be shown at a maximum vertical interval of two (2) feet. The existing contour are shown on Sheet C-1.0-Existing Conditions Site Plan. The proposed contours are shown on the Sheets C2.X Series of Site Grading Plans.

- (i) Location of, square footage, and height of existing structures and uses on the site. This information is shown on Sheet C-1.0-Existing Condition Site Plan.
- (j) Existing structures and access points on adjacent properties, including those directly across a public street. This information is shown on Sheet C-1.0-Existing Condition Site Plan.
- 2. Development plan and data:
 - (a) The title of the development, date, North arrow, scale, name and address of the owner of record and of the applicant, if other than the owner, and of the engineer, architect, landscape architect or surveyor preparing the plan shall be shown on a site plan map. The preferred scale is one (1) inch equals thirty (30) feet. The overall plan is shown at a scale of 1" = 80' but supporting plans showing all of this information is shown at a scale of 1" = 30'.
 - (b)) Property lines and dimensions of all land that is offered, or to be offered, for dedication for public use, with purpose indicated thereon, and of all property that is proposed to be served by deed covenant for the common use of the property owners of the development. Sheet PL-2 (Amended Plat of Subdivision) shows all of the proposed public roadways while Sheet PL-3 shows all of the easements.
 - (c) Estimated project construction schedule, phasing, and date of completion. This is shown on Sheet C-1.6- Project Phasing Plan.
 - (d) All means of vehicular access and egress to and from the site onto public streets (dimensions, widths, & turning radii), Sheet C1.4 Geometric plan shows this information and all provisions for pedestrian access and circulation This is shown on Sheet L1.1-Recreation, Amenity & Circulation Plan. Existing highway geometries should be given that include access points near the project. Sight distance in both directions of all driveway intersections should also be shown on the plans. Sheet C1.4 Geometric plan shows this information The linear footage Stationing is shown on the plans and width for proposed roads/driveways should be provided Sheet C1.4 Geometric plan shows this information.
 - (e) Elevations, floor plans, and sections of proposed structures **None are proposed with this application.** showing the proposed location, use, design and height of all structures, key boxes, and fire department connections. Plans shall also show any proposed division of buildings into units of separate occupancy and location of drives and access thereto.
 - (h) The location and layout of any off-street parking or loading areas, traffic circulation areas, truck circulation patterns, loading areas, areas for snow storage, bike racks, pedestrian walkways, and fire lanes. Not applicable as there are no proposed buildings for approval with this application.
 - (i) Analysis of traffic impacts, including traffic level of service/capacity analysis for existing and future conditions. Estimated daily and peak hour traffic generation, and an estimate

of traffic generation during the peak hour of the adjacent street traffic. A traffic study may be required in accordance with the standards set forth in Chapter Fourteen of the Colchester Code of Ordinances (Public Works Standards). **The Traffic Impact Study and Addenda are attached.**

- (j) Lot area in square feet and acres, and lot coverage calculations including building, overall, and front yard coverage. A lot summary sheet is included which depicts this information.
- (k) The location of all proposed waterlines, valves and hydrants and sewer lines or wells and sewage tanks, fields, lines and/or septic test pit and percolation information. This information is shown in the C3.x series of Site Utility plans. Information on water fire flows and pressures is also required. These sheets are attached.
- (1) Detailed landscaping plan, including type, size, and location of all materials used and plans for buffer screening and fencing. This information is included in Sheets 2.0 through 2.2.
- (m) Cut sheets for all proposed outdoor lighting within the site including mounting heights and a point by point lighting scheme. **This is depicted on Sheet L3.0.**
- (n) The general location of any free-standing signs. No monument signs are proposed for approval with this application. The proposed traffic management signs are depicted on Sheet C1.5-Signage & Striping Plan.
- (o) The location of any outdoor storage for equipment and materials if any, and the location, type and design of all solid waste-related facilities, including dumpsters and recycling bins. None are proposed with this application.
- (p) Location and design of all energy distribution facilities, including electrical, gas, and solar energy. The proposed electrical and natural gas distribution is shown on the C3.x series of site utility plans.
- (q) Recreation areas if required. These are depicted on Sheet L l.1.
- (r) Preliminary grading, drainage, **Shown on Sheets C2.X series** landscaping and buffering plan. **These are depicted on Sheets L 2.1 and L2.2.**
- (s) The extent and amount of cut and fill The site is proposed to be balanced except for the import of all granular materials required for the construction of the proposed improvements. for all disturbed areas, including before-and-after profiles Profiles of the proposed roadways are shown on sheets C4.0 to C4,4 (Road Profiles) and cross sections of typical development areas NA, parking lots NA and roads See Sheet C5.5-Road Sections and Details, and including an erosion and sedimentation control plan See EPSC Sheets C6.0 to C6.9, and proposed locations of sediment sink/setting pond and interceptor swales. See EPSC Sheets C6.0 to C6.9

- (t) Detailed plans of retaining walls, steps, ramps, paving See Sheet C5.5 Roadway Sections and Details, and drainage structures See Sheet C5.2-Storm Details.
- (u) Estimate of all earthwork, including the quantity of any material to be imported to or removed from the site or a statement that no material is to be removed or imported. The project is designed to be balanced except for the importation of granular materials for the construction of the proposed improvements, the estimated volumes of granular materials is 13,000 CY.
- (v) Proposed stormwater management system, including (as applicable) location, supporting design data and copies of computations used as a basis for the design capacities and performance of stormwater management facilities. The computations for the Stormwater system are attached.
- (w) The location of all existing and proposed site improvements, including drains, culverts, retaining walls and fences. These are show on the C2.x (Grading & Drainage) and C3.x (Utility) series of plan sheets.
- (x) Finished grades of walls, pavements, and storm drains. These are included in the C2.x (Grading & Drainage) series of plan sheets.
- (y) Proposed streets and lots within the subdivision names and numbered in numerical order within blocks in accordance with Chapter 17 of the Colchester Code of Ordinances.This is shown on Sheet PL-2 (Amended Plat of Subdivision).
- (z) Final Plat Supporting Documents
 - (1) A copy of all proposed deeds, agreements, or other documents which convey or relate to the use of a privately owned street or right-of-way including a completed contract between the land owner and the Town regarding the number of lots or dwelling units to be served by the proposed right-of-way or private street and the responsibility for the roadway maintenance. These are attached in the "legals" subdirectory of the PDF submittal.
 - (2) Copies of proposed deeds, agreements or other documents showing the manner in which open space including park and recreational areas and school site areas, are to be dedicated, reserved and maintained and a certificate of the Town Attorney that these documents are satisfactory. **These are attached in the ''legals'' subdirectory.**
 - (3) A copy of such covenants or deed restrictions as are intended to cover all or part of the tract **These are attached in the "legals" subdirectory.**
 - (4) A prospectus describing the management organization if the DRB requires the creation of an owners' association or management organization. This is attached in the "legals" subdirectory.

- 3. Other: Any other information or data that the Administrative Officer or DRB shall require for a full assessment of the project pursuant to this article. The Administrative Officer shall have the authority to, when reasonable, waive any application requirements for final plat approval. Any such waiver may be exercised in the event any such requirements are:(a) found not to be requisite in the interest of public health, safety, or general welfare or;
 - (b) inappropriate to a particular site plan because of the particular character or limited nature of a new development or change in use or conditions peculiar to a site.

CIVIL ENGINEERING ASSOCIATES, INC.

10 Mansfield View Lane South Burlington, VT 05403 Phone: 802-864-2323 Fax: 802-864-2271 E-Mail: dmarshall@cea-vt.com

November 5, 2019

Colchester Fire District #3 c/o Town of Colchester Planning and Zoning Department 781 Blakely Road Colchester, VT 05446

Re: Ireland Industries, Inc. Final Plat Application for a Planned Unit Development Response to Colchester Fire District #3 review comments.

Dear Ms. Riddle:

On Monday November 4, 2019 we received comments from Colchester Fire District#3 as it relates to the proposed water distribution system located within the Sunderland farms Community project. The items summarized below are from the Page 1 review check list where the boxes indicating "No" or "Insufficient Information". The responses to each of these are shown in **bold font**. Following Page 1 there were a series of written comments which are also addressed later in the letter.

3.Is the depth of all water mains between 6' and 9' below grade? On Shea Drive (Sheet C4.1) in two locations (Sta 202+45 and Sta 208+72) the depth exceeds the 9' due to gravity and storm line vertical alignment constraints and the minimum 18" vertical separation required for both water and sewer and water and storm systems. At Sta 202+45 the water line has been adjusted to be 9.5 foot maximum below finish grade. At Sta 208+72 no adjustment was made due the separation and cover constraints resulting in a maximum cover of 10 feet below finish grade.

6.Do new tee connections include valves on all three legs? All tee locations have valves on all three legs.

7.Do all mains meet horizontal and vertical separation from sewers? The site plans included in the plan package shows that the water mains meet the 10' horizontal separation distance at all locations. And the profiles show the water mains meet the 18" vertical separation. Distance at all locations.

11. Do fire hydrants meet Town specifications? The Town Public Works Specifications calls for new hydrants to be Mueller Super Centurion 250, Figure A-423, Kennedy K-

81 or Waterous Pacer. The hydrant detail on Sheet C5.1 calls for the use of Kennedy K-81. On sheet C7.4 Section 2.14 the acceptable materials are per the town public works requirements.

12. Are the fire hydrants connected to main with 6" pipe and valve? Yes, the typical detail on Sheet C5.1 shows the use of a 6" minimum Class 52 cement lined ductile iron supply pipe and 6" valve.

13. Are there hydrants at high point(s) to aid in air removal? The crest high points in the system are located at hydrants. Otherwise the system all slopes up to Severance Road. Hydrants have been located at the high points of the distribution system as readily observed on the profile sheets C4.0 thru C4.4.

14. Are there mechanical thrust restraint and thrust blocks at all fittings? Yes, the typical detail on Sheet C5.1 shows the sizes of the thrust blocks and Sheet C5.1 calls out the use of thrust blocks at all bends greater an 11.25 degrees.

15. Do all valves meet Town specifications? The Town Public Works Specifications calls for new valves to be Mueller, Kennedy, AFC, or approved equal. Specification sheet C7.3 section 2.07A calls for the use of these approved valves.

18. Do all valves include a valve box at grade w/covers marked "water"? Yes, the typical detail on Sheet C5.1 calls for the use of a valve box with a "water" valve cover. Thi sis reinforced for all valves within sheet C7.3 section 2.07 B

19. Do all services leave water mains and enter buildings at right angles? As this application only covers the water distribution system (there are no buildings proposed with this application) the answer for the distribution system is yes as evidence on the site plans C3.X series and is further reinforced in specification sheet C7. 4 section 2.16A.

20. Are all services up to 2" using type K copper or CTS pipe? The typical detail on Sheet C5.1 shows the use of Type K copper service line and specification sheet C7.4 section 2.16A provides additional requirements for water service line installments.

21. Are there separate fire and domestic connections? There are no buildings that are part of this application. Where Sprinkler supply is required for a building, a shared line for the domestic and sprinkler service is proposed and will be part of any future site plan application.

22. If plastic pipe is used for services, do they include a tracer wire and metallic warning marked "Caution Water Line Below" 2' below grade? Not applicable as the proposed services are copper.

Ms. Lisa Riddle Page 3 of 6 November 5, 2019

23. Do the plans include a water system specifications drawing, including pressure testing and disinfection requirements? **Yes, Sheet C7.4 Section 3.04 covers all of this information.**

24. Do the plans include water use estimates using the applicable table from the latest Vermont Environmental Standards? No, this application does not have any design flows as there are no buildings proposed. However, we have attached the Impact Statement which includes the water design flows for the conceptual future buildings.

25. Is the project large enough to require Needed Fire Flow (NFF) and/or hydraulic analysis for domestic and fire flow demands, or to prove whether or not the project may have an adverse impact to existing customers? **Based upon modeling information provided by the Fire District's engineering consultant for the new water main extension, we have attached spreadsheet modeling that indicates that the proposed system will provide adequate fire flow for the project.** Please see the attached "Engineers Report" used in support of the application to the State of Vermont for Water Supply Division Permit to Construct.

ADDITIONAL REVIEW COMMENTS

- 1. Water main material has been changed from DI to C900 pipe. Sheet C7.3 (Site Specifications) Section 2.02, incorrectly lists DR-14 as 200psi. The correct pressure rating should be 305psi. This has been corrected on Sheet C7.3 section 2.02. Per item #2 of this review checklist, CFD#3 allows DR-14 pipe provided it gets installed with approved tracer wire and metallic warning tape. The typical detail on Sheet C5.1 calls for the use of tracer wire and metallic warning pipe.
- 2. Tracer wire is called out on Sheet C5.1 (Water Details) with no specifications. We request the use of copper-clad steel wire and locking connectors from Copperhead Industries. This callout has been added to this detail.
- 3. Per item #3 of this checklist, water main depths exceed 9 feet on Shea Drive (Sheet C4.1) in at least two locations (Sta 202+45 and Sta 208+72). This should be avoided. On Shea Drive (Sheet C4.1) in at two locations (Sta 202+45 and Sta 208+72) the depth exceeds the 9 feet due to gravity storm line vertical alignment constraints and the minimum 18" vertical separation. At Sta 202+45 the water line has been adjusted to be 9.5 foot maximum below finish grade. At Sta 208+72 no adjustment was made due to the gravity sewer and storm constraints and vertical separation requirements.
- 4. Per item #4, two (2) 90 degree bends are represented on Dylan Avenue (Sheet C3.2) near Sta 107+00. Replace each bend with 45 degree elbows. This has been revised on Sheet C3.2.
- 5. Sheet C7.4 Section 2.14. Please eliminate Waterous Pacer fire hydrants **This has been removed from Sheet C7.4**. CFD#3 recommends the Kennedy K81 over the Mueller hydrant. **We have called out the Kennedy Hydrant on the hydrant**

Detail on Sheet C5.1 but the specifications remain consistent with what is permitted in the Town Public Works Specifications.

- 6. Tracer wire can either be terminated in the hydrant valve box or in an adjacent curb box as shown in the Tapping Sleeve & valve Detail on Sheet C5.1. We have added the option of terminating the tracer wire in the hydrant valve box as an additional option.
- 7. Per item #17, are there easement requirements to allow CFD#3, or its designee, to enter this project to inspect and/or maintain the distribution system following construction? We have added a Note on Sheet C3.0 indicating that Colchester Fire District #3 representatives have the right to enter onto private property where any portion of the distribution system is located to conduct inspections and maintenance of the system.
- 8. Checklist item #19, above, requires services to leave mains and enter buildings at right angles. This set of plans doesn't show buildings and therefore this condition is not answered. This application does not propose any buildings. Future site plan applications will cover the issue of service alignment at the building face. Specification sheet C7.4 section 2.16 specifically addresses the orthogonal requirement between the corporation stop and the curb stop.
- 9. Response needed for item 21, above. Please see the response previously outlined in item 21.
- 10. Add pressure testing and disinfection requirements to Site Specification sheet(s). This information was and is shown on Sheets C7.4 C7.5
- 11. Per item #24, above, water use estimates are provided separate from these plans. Please see the response previously outlined in item 24.
- 12. Per item #25, above, while Needed Fire Flow (NFF) numbers have not been provided, a simple hydraulic analysis by Krebs & Lansing with the new 12" water main through Sunny Hollow should meet the project's domestic and fire needs. **Please see the response outlined in item 25.**
- 13. Backflow preventers are <u>required</u> on services that provide both domestic and sprinkler water. Acknowledged. This will be addressed with each site plan application.
- 14. Typical Water Trench Detail vague use of insulation when depth of cover is less ten 6' specify depth and required insulation, On Sheet C5.1 We have added the requirements that a minimum of 1" of insulation be provided for each 1-foot of deficient cover with a minimum of 2' of insulation to be installed.

Ms. Lisa Riddle Page 5 of 6 November 5, 2019

- 15. Water/Sewer Crossing Detail specifies 18" minimum separation. On new construction 18" should be obtainable. Clarify. Yes, and 18" will be provided. The 18" minimum callout is provided as a reminder that any necessary field adjustments are required to meet this standard. There are locations where the gravity drainage and the gravity sewer main vertical alignments have little flexibility due to their location within the project site. Reinforcement of the 18" minimum separation distance remains a permitting requirement in a handful of locations.
- 16. Water/Storm Crossing Detail (for new construction) would dictate all water/storm crossings main are greater than 18" separation. Clarify. Yes, the State of Vermont treats storm lines the same as sanitary lines with regard to vertical separation. There are locations within the project where the flexibility of the vertical alignment of the storm and/or sewer is limited and the vertical alignment of the non-gravity dependent water main is adjusted to provide the requisite vertical separation.
- 17. Hydrant Assembly Detail Location in relation to curb or sidewalk See CFD#2 Standards page 16. Should the 6" water main be specified as lined DI? The hydrant detail on Sheet C5.1 has been revised so that the water main has been called out to be class 52 cement lined ductile iron.
- Tapping Sleeve and Valve Detail We don't want concrete encased fittings Concrete encasement of the fittings is not proposed not depicted on the detail on Sheet C5.1. The plastic sheeting is called out to be used as a means of protecting the mechanical fittings from concrete splash.
- 19. Replacement of existing pavement NA to our review
- 20. 2.03 F - All fittings shall be mechanically restrained (i.e. Megalug or equal) and thrust blocked. The word " mechanically restrained (i.e. Megalug or equal)" has replaced the word "restrained", in describing the restraint requirements over and above the use of thrust blocks on Sheet C7.3 section 2.03C.
- 21. 2.05 A Sleeves shall be stainless steel? This has been revised to require that the tapping sleeve be constructed on stainless steel instead of the ductile iron callout on Sheet C7.3.
- 22. 2.07 Gate valves are not required every 500'? This requirement has bene removed from this section of Sheet C7.3.
- 2.16 C Doesn't mention C900 water main. We have added Section F. which states that "Services greater than 2" diameter shall be constructed using C900 PVC pipe in accordance with the requirements set forth in Section 2.02 on Sheet C7.3".

Ms. Lisa Riddle Page 6 of 6 November 5, 2019

24. 3.03 A & B – Specified 18" separation. Should be possible on new construction. As storm sewers aren't shown cannot determine horizontal and vertical separation with water mains. Sewer lines and storm lines crossings of water mains were and are shown on the profiles.

This completes our summary of the responses to Colchester Fire District #3's review comments. If you should have any questions, please feel free to contact me at 864-2323 x310 or at <u>dmarshall@cea-vt.com</u>.

Best Regards

David S. Marshall, P.E. Principal Engineer

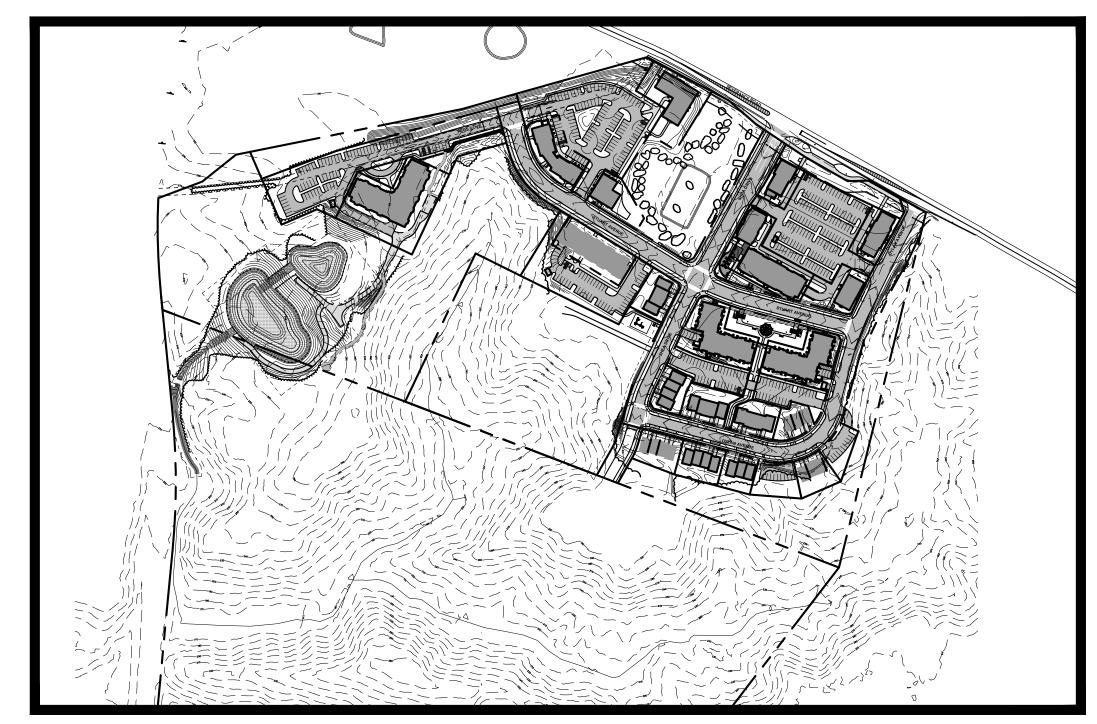
Attachments: Impact Statement Engineers Report Revised Sheets C1.7 – Hydrant Plan C3.0 - Overall Utility Plan C3.1 – Northeast Utility Plan C3.2 – Southeast Utility Plan C3.3 – Northwest Utility Plan C4.0 – C4.4 Profile Sheets C5.1 – Water Details C7.3 – C7.5 Specification Sheets

Cc: (w/ encl., no plans) CEA File 14134.00, Robin Jeffers (plans are in final plat submittal set)

P:\AutoCADD Projects\2014\14134\3-Permitting\1-Local Applications\3-Final\Response to CFD#3 water comments.docx

IREAND INDUSTRIES ERLAND FARMS COMMUNITY

OWNERS:


ROBIN JEFFERS, PROJECT COORDINATOR IRELAND INDUSTRIES 193 INDUSTRIAL AVENUE WILLISTON, VERMONT 05495

LANDSCAPE ARCHITECT:

CIVIL ENGINEER:

MICHAEL BUSCHER T.J. BOYLE ASSOCIATES 301 COLLEGE STREET BURLINGTON, VERMONT 05401

DAVID MARSHALL CIVIL ENGINEERING ASSOC., INC. 10 MANSFIELD VIEW LANE, SOUTH BURLINGTON, VERMONT 05403

COLCHESTER, VERMONT

November 01, 2019

TRAFFIC ENGINEER:

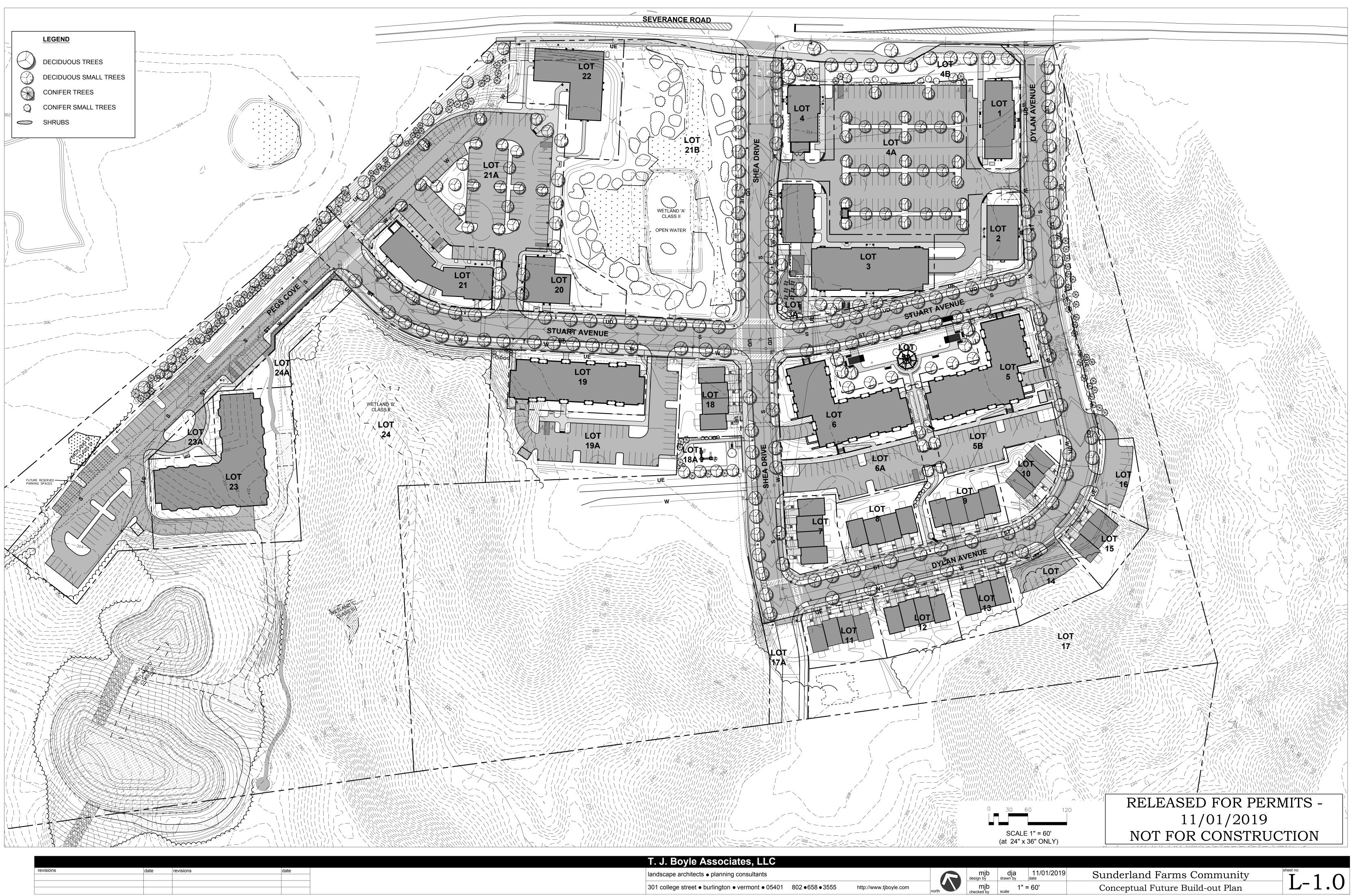
WETLANDS CONSULTANT:

TABLE OF CONTENTS

COVER SHEET

- CONCEPTUAL FUTURE BUILD-OUT PLAN L1.0 L1.1 RECREATION, AMENITY & CIRCULATION PLAN
- STREET TREE PLANTING PLAN L2.0
- L2.1 L2.2 LANDSCAPE PLAN LOTS 1–17 LANDSCAPE PLAN LOTS 18–22
- L3.0 STREETS LIGHTING PLAN
- L4.0 PLANTING DETAILS L4.1 LIGHTING DETAILS
- L4.2 LANDSCAPE DETAILS

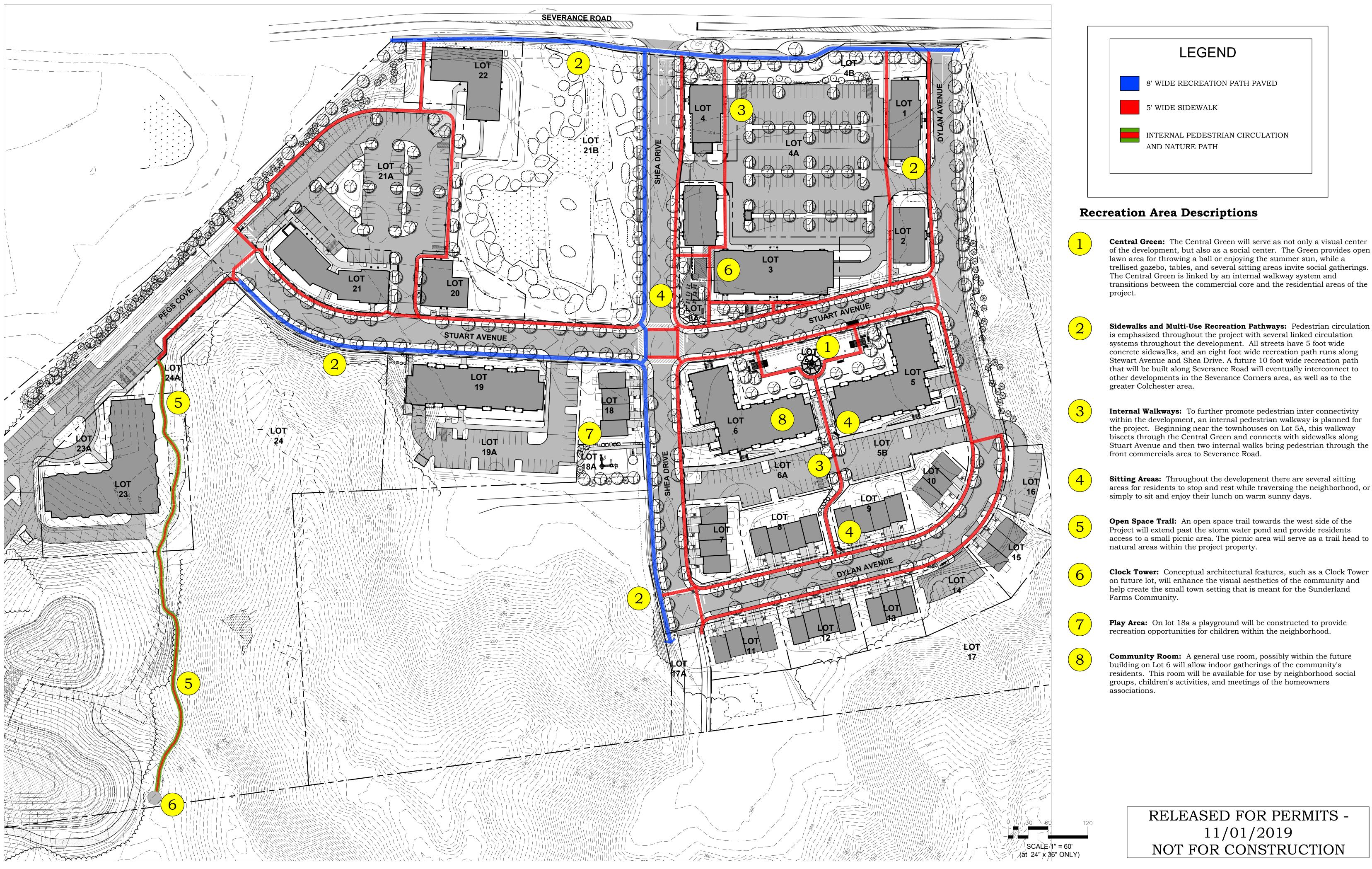
PL-1 EXISTING BOUNDARIES AMENDED PLAT OF PROPOSED SUBD PL-2 AMENDED PLAT OF PROPOSED SUBDIVISION PL-3 AMENDED PLAT OF PROPOSED SUBDIVISION


- C1.0 EXISTING CONDITIONS SITE PLAN
- C1.1 CONCEPTUAL FUTURE BUILD-OUT PLAN
- C1.2 FORM BASE CODE LAYOUT SHEET
- C1.3 FORM BASE CODE LAYOUT SHEET WITH BUILDING ENVELOPES
- C1.4 ROAD GEOMETRY
- C1.5 SIGNAGE AND STRIPING PLAN C1.6 PHASING PLAN
- C1.7 HYDRANT PLAN
- C2.0 OVERALL GRADING AND DRAINAGE PLAN
- C2.1 NORTHEAST GRADING AND DRAINAGE PLAN
- C2.2 SOUTHEAST GRADING AND DRAINAGE PLAN C2.3 NORTHWEST GRADING AND DRAINAGE PLAN
- C2.4 SOUTHWEST GRADING AND DRAINAGE PLAN
- C2.5 SOUTHWEST GRADING AND DRAINAGE PLAN

COREY MACK, P.E. RESOURCE SYSTEMS GROUP, INC. 180 BATTERY STREET, SUITE 350 BURLINGTON, VERMONT 05401

PETER SPEAR NATURAL RESOURCES CONSULTING SERVICES 67 WEST SHORE ROAD GRAND ISLE, VERMONT 05458

	C3.0 OVERALL UTILITY PLAN C3.1 NORTHEAST UTILITY PLAN C3.2 SOUTHEAST UTILITY PLAN C3.3 NORTHWEST UTILITY PLAN C3.4 SOUTHWEST UTILITY PLAN C3.5 ELECTRICAL LAYOUT PLAN
	C4.0 DYLAN AVE ROAD PROFILE STA. $100+00 - 112+11$ C4.1 SHEA DRIVE ROAD PROFILE STA. $200+00 - 209+73$ C4.2 STEWART AVE ROAD PROFILE STA. $300+00 - 311+35.5$ C4.3 PEGS COVE ROAD PROFILE STA. $400+00 - 408+00$ C4.4 PEGS COVE ROAD PROFILE STA. $407+00 - 415+37$
	 C5.0 SEWER AND ELECTRICAL DETAILS C5.1 WATER DETAILS C5.2 STORM DETAILS C5.3 STORM DETAILS C5.4 DETENTION POND SECTIONS C5.5 ROAD SECTIONS AND DETAILS C5.6 ROADWAY AND SITE DETAILS
ES	C6.0 OVERALL EROSION CONTROL PLAN C6.0A OVERALL EROSION CONTROL PHASING PLAN C6.1 NORTHEAST EROSION CONTROL PLAN C6.2 SOUTHEAST EROSION CONTROL PLAN C6.3 NORTHWEST EROSION CONTROL PLAN C6.4 SOUTHWEST EROSION CONTROL PLAN C6.5 SOUTHWEST EROSION CONTROL PLAN C6.6 ESPC SPECIFICATIONS AND DETAILS C6.7 ESPC SPECIFICATIONS AND DETAILS C6.8 ESPC SPECIFICATIONS AND DETAILS C6.9 ESPC SPECIFICATIONS AND DETAILS C6.10 ESPC SPECIFICATIONS AND DETAILS C6.11 ESPC NARRATIVE C6.12 ESPC NARRATIVE C6.13 ESPC NARRATIVE
	C7.0-7.5 SITE SPECIFICATIONS



visions	date	revisions	date	

301 college street • burlington • vermont • 05401 802 • 658 • 3555

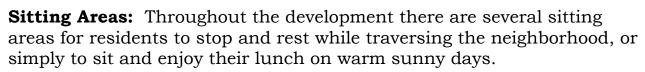
http://www.tjboyle.com

Conceptual Future Build-out Plan

	1-1-		data	
sions	date	revisions	date	

T. J. Boyle Associates, LLC

landscape architects • planning consultants


301 college street • burlington • vermont • 05401 802 • 658 • 3555

http://www.tjboyle.com

Central Green: The Central Green will serve as not only a visual center of the development, but also as a social center. The Green provides open trellised gazebo, tables, and several sitting areas invite social gatherings. transitions between the commercial core and the residential areas of the

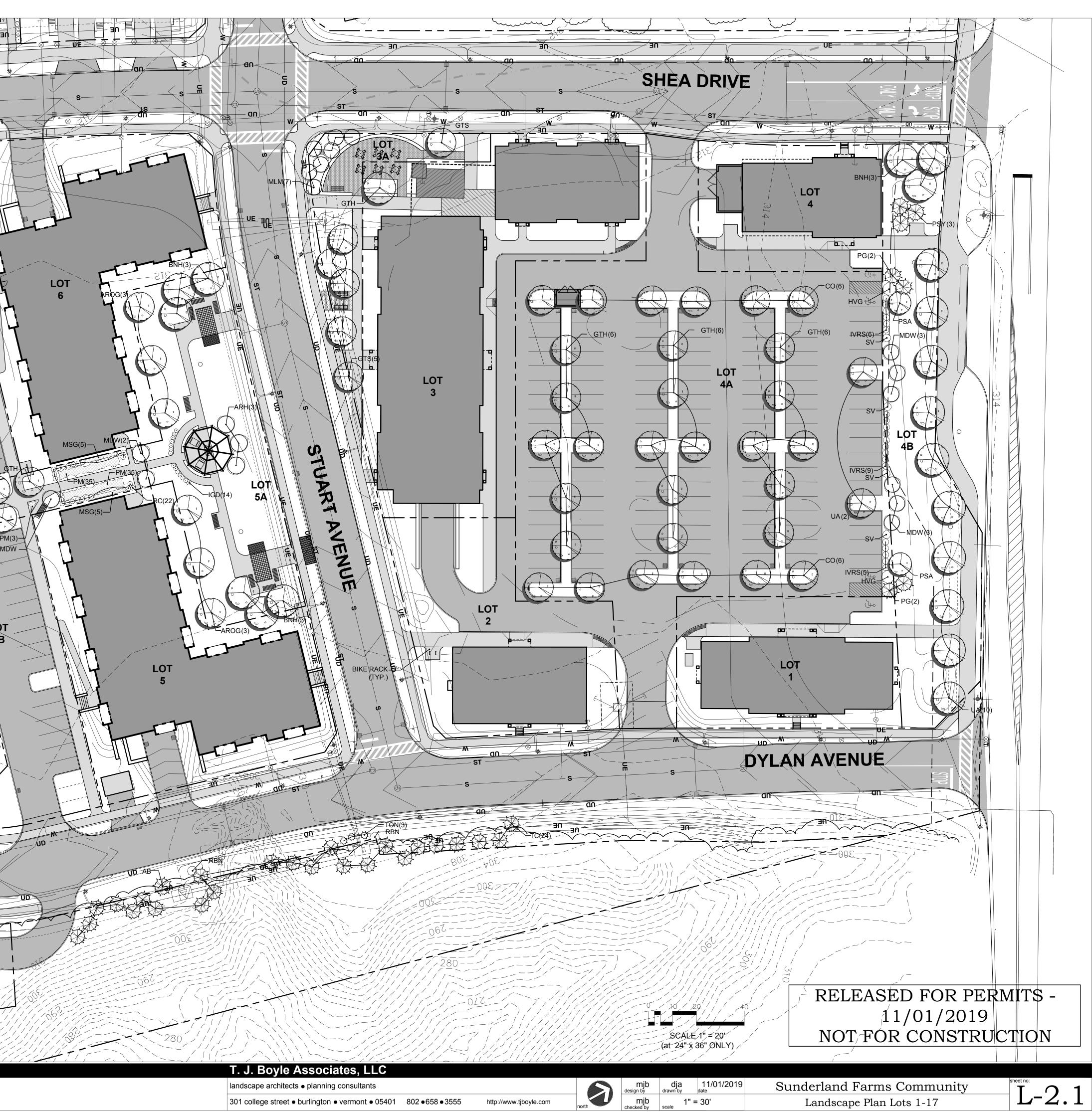
Sidewalks and Multi-Use Recreation Pathways: Pedestrian circulation is emphasized throughout the project with several linked circulation concrete sidewalks, and an eight foot wide recreation path runs along Stewart Avenue and Shea Drive. A future 10 foot wide recreation path that will be built along Severance Road will eventually interconnect to other developments in the Severance Corners area, as well as to the

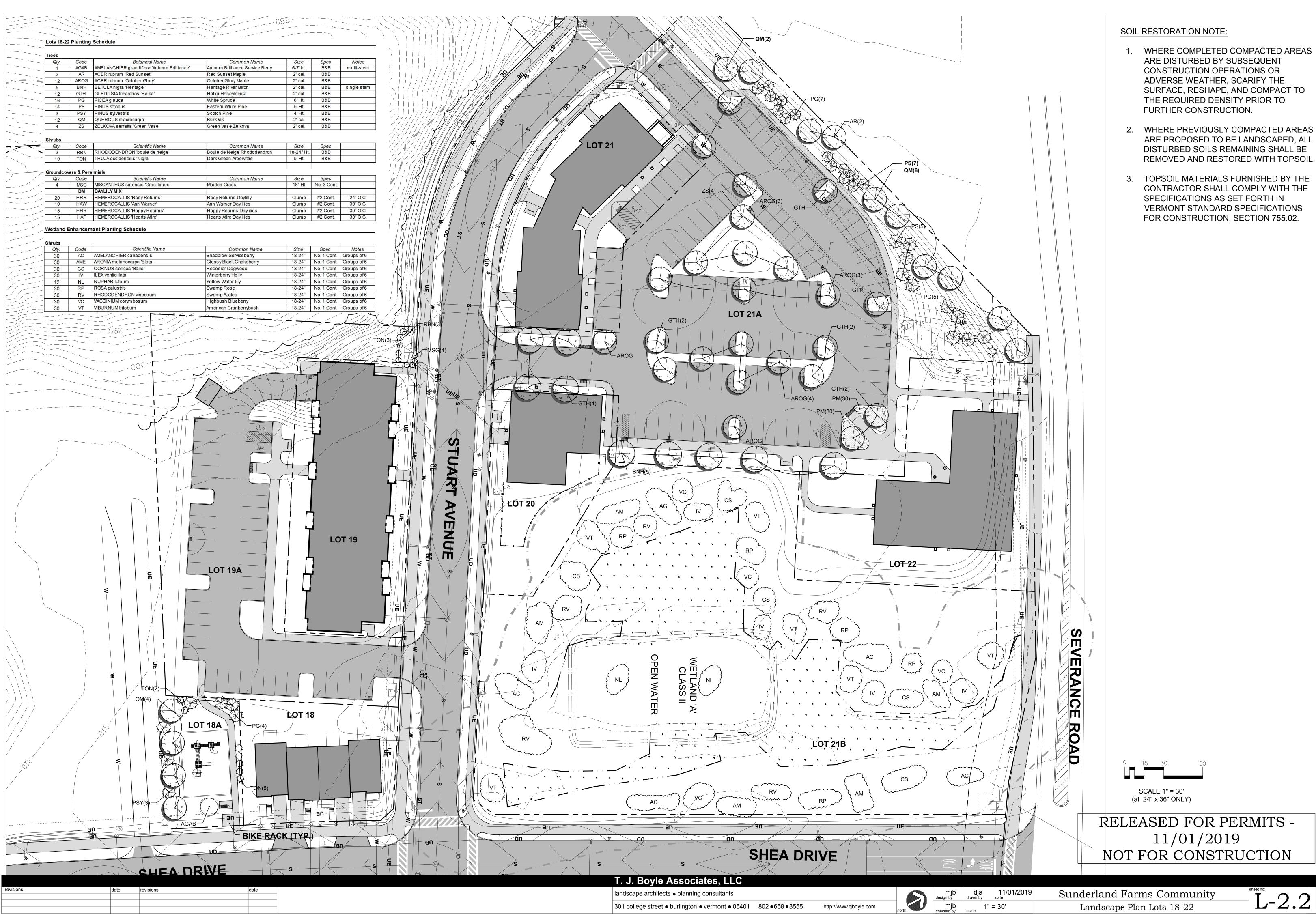

Internal Walkways: To further promote pedestrian inter connectivity within the development, an internal pedestrian walkway is planned for the project. Beginning near the townhouses on Lot 5A, this walkway bisects through the Central Green and connects with sidewalks along Stuart Avenue and then two internal walks bring pedestrian through the

Clock Tower: Conceptual architectural features, such as a Clock Tower on future lot, will enhance the visual aesthetics of the community and

Community Room: A general use room, possibly within the future building on Lot 6 will allow indoor gatherings of the community's residents. This room will be available for use by neighborhood social

mjb design by	dja 11/01/2019 drawn by date	Sunderland Farms Community	sheet no:
mjb checked by	scale 1" = 60'	Recreation, Amenity & Circultion Plan	

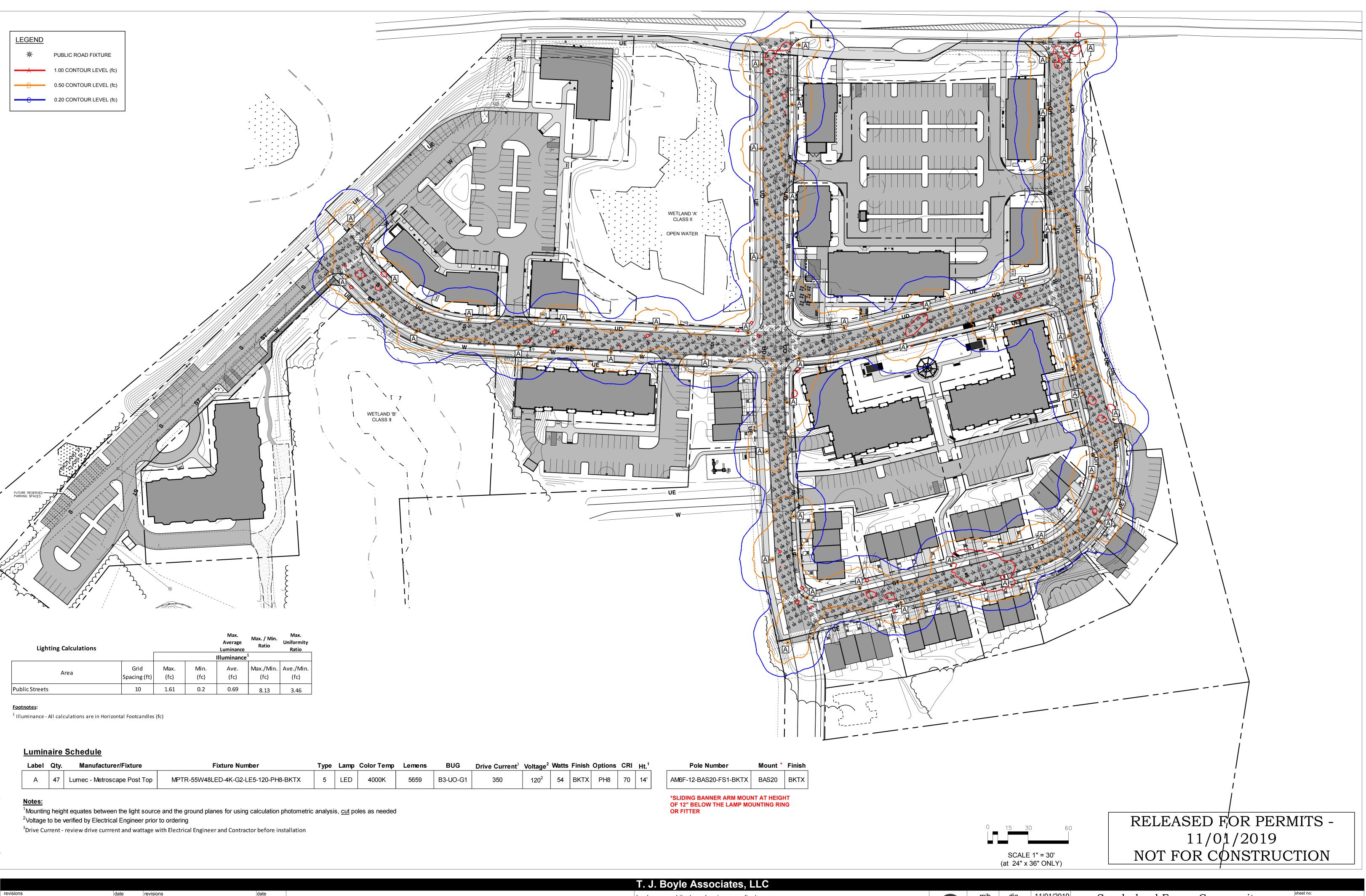

isions	date	revisions	date


landscape architects • planning consultants

301 college street • burlington • vermont • 05401 802 • 658 • 3555

mjb design by	dja drawn by	11/01/2019	Sunderland Farms Community
mjb checked by	1" =	= 50'	Street Tree Planting Plan

						-UE			
			S	*		S ST	0	HEA D	
	OTE T	17A	ST C						
			S C		LOT 7				
								LOT	312
		LOT	File I		8				
					AG				
Image: contrast line of the contrast line contrast line of the contrast line of the contras									
Notest Autor Autor Test 0									5
Trees Bolanical Name Common Name Size Spec Notes 1 Al ABES balsamea Balsam Fir 6'HI. B&B Notes 1 ALCER Notum "October Gory Maple 2'rail. B&B BB Notes 1 ALCER Notum "October Gory Maple 2'rail. B&B multi-sim BB Notes 3 ARH. AMELANCHER y grantflora Nutum Britiance Sarvice Barry 2'rail. B&B multi-sim BB multi-sim 1 ALCE Sate Antel-ANCHER y grantflora Nuturi Promove Park 2'rail. B&B multi-sim 3 ARH. AMELANCHER y grantflora Subnuari Promove Park 2'rail. B&B single-stem 1 ALCE Sate Difficit Nationanthe Subnuari Promove Park 2'rail. B&B single-stem 1 ALCE Sate Difficit Nationanthe Subnuari Promove Park 2'rail. B&B single-stem 20 OTK Settem Subnuari Promove Park Promove Park Promove Park Promove Park Promove Park <td< td=""><td></td><td></td><td></td><td></td><td>Contraction of the second seco</td><td></td><td></td><td>уот</td><td></td></td<>					Contraction of the second seco			уот	
20 G'H GLEDTSIA trianthos Halka" Halka Honeylocust 2" cal. B&B 6 GTS GLEDTSIA trianthos Sunburst Honeylocust 2" cal. B&B 7 MLM MAQNOLIA x laebneri "Leonard Messel" Leonard Messel Magnolia 7.8" Ht. B&B 10 MDW MALUS Tooral Wyman" Donald Wyman Crabappie 2" cal. B&B 4 PG PICEA glauca White Spruce 6" ht. B&B 2 PSX PINULS saytestris Socitch Pline 4" Ht. B&B 2 PSA PRIVULS saytestris Socitch Pline 4" Ht. B&B 2 PSA PRIVULS saytestris Cock 2" cal. B&B 24 TC TSUGA canadensis Canadian Hemlock 5-6" Ht. B&B 12 UA ULMUS Morton' Accolade Accolade Elm 2" cal. B&B 24 TC TSUGA canadensis Cammon Name Size Spec 24 HVG HAMAWELLS wrignitana Common Name <td>TreesQty.Code1AB6AROG1AGAB3ARH9BNH</td> <td>Botanical Name ABIES balsamea ACER rubrum 'October Glory' AMELANCHIER grandiflora 'Autumn Brilliance' AMELANCHIER x grandiflora 'Robin Hill' BETULA nigra 'Heritage'</td> <td>Balsam Fir October Glory Maple Autumn Brilliance Service Berry Robinhill Serviceberry Heritage River Birch</td> <td>6'Ht. 2"cal. 6-7'ht. 2"cal. 2"cal.</td> <td>B&B B&B B&B B&B B&B</td> <td>multi-stem single-stem</td> <td></td> <td></td> <td></td>	TreesQty.Code1AB6AROG1AGAB3ARH9BNH	Botanical Name ABIES balsamea ACER rubrum 'October Glory' AMELANCHIER grandiflora 'Autumn Brilliance' AMELANCHIER x grandiflora 'Robin Hill' BETULA nigra 'Heritage'	Balsam Fir October Glory Maple Autumn Brilliance Service Berry Robinhill Serviceberry Heritage River Birch	6'Ht. 2"cal. 6-7'ht. 2"cal. 2"cal.	B&B B&B B&B B&B B&B	multi-stem single-stem			
24 TC TSUGA canadensis Canadian Hemlock 5-6' Ht B&B 12 UA ULMUS 'Monton' Accolade Accolade Elm 2" cal. B&B Shrubs Qty. Code Scientific Name Common Name Size Spec 14 IGD ILEX glabra 'Densa' Densa Compact Inkberry 3' Ht B&B LOT 20 IVRS ILEX v. Red Sprite' Red Sprite Wintebrary 3' Ht B&B 16 22 RBN RHODODENDRON toule de neige' Boule de Neige Rhododendron 18-24" Ht B&B 16 22 RC RHODODENDRON toule de neige' Boule de Neige Rhododendron 18-24" Ht B&B 16 22 RC RHODODENDRON toule de neige' Boule de Neige Rhododendron 18-24" Ht B&B 16 22 RC RHODODENDRON toule de neige' Dark Green Arborvitae 5' Ht B&B 16 4 SV SYRINGA wulgaris Common Lilac 4' Ht B&B 16 9 TON THUJA occidentalis 'Nigra' Dark Green Arborvitae 5' Ht	20 GTH 6 GTS 7 MLM 10 MDW 4 PG 3 PSY 2 PSA	GLEDITSIA tricanthos 'Halka" GLEDITSIA tricanthos 'Sunburst' MAGNOLIA x laebneri 'Leonard Messel' MALUS 'Donal Wyman' PICEA glauca PINUS sylvestris PRUNUS sargentii	Halka Honeylocust Honeylocust Leonard Messel Magnolia Donald Wyman Crabapple White Spruce Scotch Pine Sargent Cherry	2" cal. 2" cal. 7-8' Ht. 2" cal. 6' ht. 4' Ht. 2" cal.	B&B B&B B&B B&B B&B B&B B&B B&B				
20 IVRS ILEX v. Red Sprite' Red Sprite Winterberry 3' Ht. B&B 16 2 RBN RHODODENDRON 'boule de neige' Boule de Neige Rhododendron 18-24" Ht. B&B 16 22 RC RHODODENDRON contatwibiense "Album' Catawbienses Album Rhododendron 18-24" Ht. B&B 16 4 SV SYRINGA vulgaris Common Lilac 4' Ht. B&B 16 9 TON THUJA occidentalis 'Nigra' Dark Green Arborvitae 5' Ht. B&B 16 4 SV SYRINGA vulgaris Common Lilac 4' Ht. B&B 16 9 TON THUJA occidentalis 'Nigra' Dark Green Arborvitae 5' Ht. B&B 16 4 SV Scientific Name Common Name Size Spec 10 4 Groundcovers & Perennials 18" Ht. No. 3 Cont. 18" Ht. No. 3 Cont. 18" Ht. 10 MSG MISCANTHUS sinensis 'Gracillimus' Maiden Grass 18" Ht. No. 2 Cont. 24" O.C. 34 EP ECHINACEA p. White Swan' White Swan Echinace	24 TC 12 UA Shrubs Qty. Code 2 HVG 14 IGD	TSUGA canadensis ULMUS 'Morton' Accolade Scientific Name HAMAMELIS virginiana ILEX glabra 'Densa'	Canadian Hemlock Accolade Elm Common Name Common Witchhazel Densa Compact Inkberry	5-6' Ht. 2" cal. Size 4' ht. 3' Ht.	B&B B&B Spec B&B B&B				
10 MSG MISCANTHUS sinensis 'Gracillimus' Maiden Grass 18"Ht. No. 3 Cont. PM PERENNIAL MIX Adden Grass 18"Ht. No. 3 Cont. 34 EP ECHINACEA p. 'Harvest Moon' Harvest Moon Cone Flower Clump No. 2 Cont. 24" O.C. 38 ECX ECHINACEA p. White Swan' White Swan Echinacea 2-3' Ht. No. 2 Cont. 18" O.C.	2 RBN 22 RC 4 SV 9 TON J Groundcovers & Percent	RHODODENDRON 'boule de neige' RHODODENDRON catawbiense "Album' SYRINGA vulgaris THUJA occidentalis 'Nigra'	Boule de Neige Rhododendron Catawbiensse Album Rhododendron Common Lilac Dark Green Arborvitae	18-24" Ht. 18-24" Ht. 4' Ht. 5' Ht.	B&B B&B B&B B&B				
	10 MSG PM 34 EP 38 ECX	MISCANTHUS sinensis 'Gracillimus' PERENNIAL MIX ECHINACEA p. 'Harvest Moon' ECHINACEA p. 'White Swan'	Maiden Grass Harvest Moon Cone Flower	18" Ht. Clump	No. 3 Cont. No. 2 Cont.				



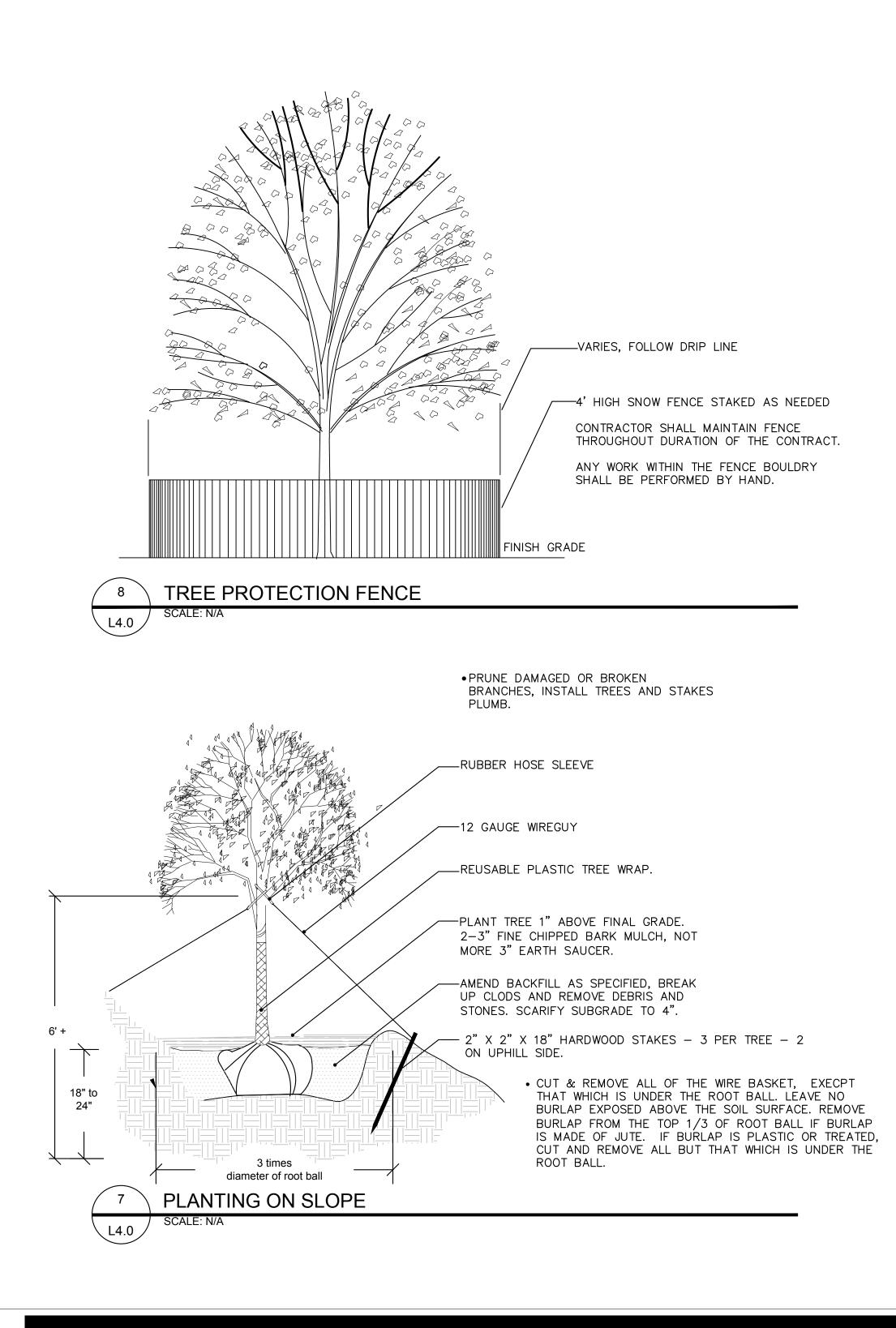
301 college street • burlington • vermont • 05401 802 • 658 • 3555

http://www.tjboyle.com

- 1. WHERE COMPLETED COMPACTED AREAS ARE DISTURBED BY SUBSEQUENT CONSTRUCTION OPERATIONS OR ADVERSE WEATHER, SCARIFY THE SURFACE, RESHAPE, AND COMPACT TO THE REQUIRED DENSITY PRIOR TO
- 2. WHERE PREVIOUSLY COMPACTED AREAS ARE PROPOSED TO BE LANDSCAPED, ALL DISTURBED SOILS REMAINING SHALL BE REMOVED AND RESTORED WITH TOPSOIL.
- 3. TOPSOIL MATERIALS FURNISHED BY THE CONTRACTOR SHALL COMPLY WITH THE SPECIFICATIONS AS SET FORTH IN VERMONT STANDARD SPECIFICATIONS FOR CONSTRUCTION, SECTION 755.02.

Lighting Calculations				Max. Average Luminance	Max. / Min. Ratio	Max. Uniformity Ratio
				Illuminance	L	
Area	Grid Spacing (ft)	Max. (fc)	Min. (fc)	Ave. (fc)	Max./Min. (fc)	Ave./Min. (fc)
Public Streets	10	1.61	0.2	0.69	8.13	3.46

_	Label	Qty.	Manufacturer/Fixture	Fixture Number	Туре	Lamp	Color Temp	Lemens	
	А	47	Lumec - Metroscape Post Top	MPTR-55W48LED-4K-G2-LE5-120-PH8-BKTX	5	LED	4000K	5659	B


revisions	date	revisions	date

301 college street • burlington • vermont • 05401 802 • 658 • 3555

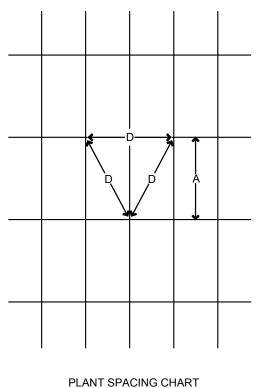
http://www.tjboyle.com

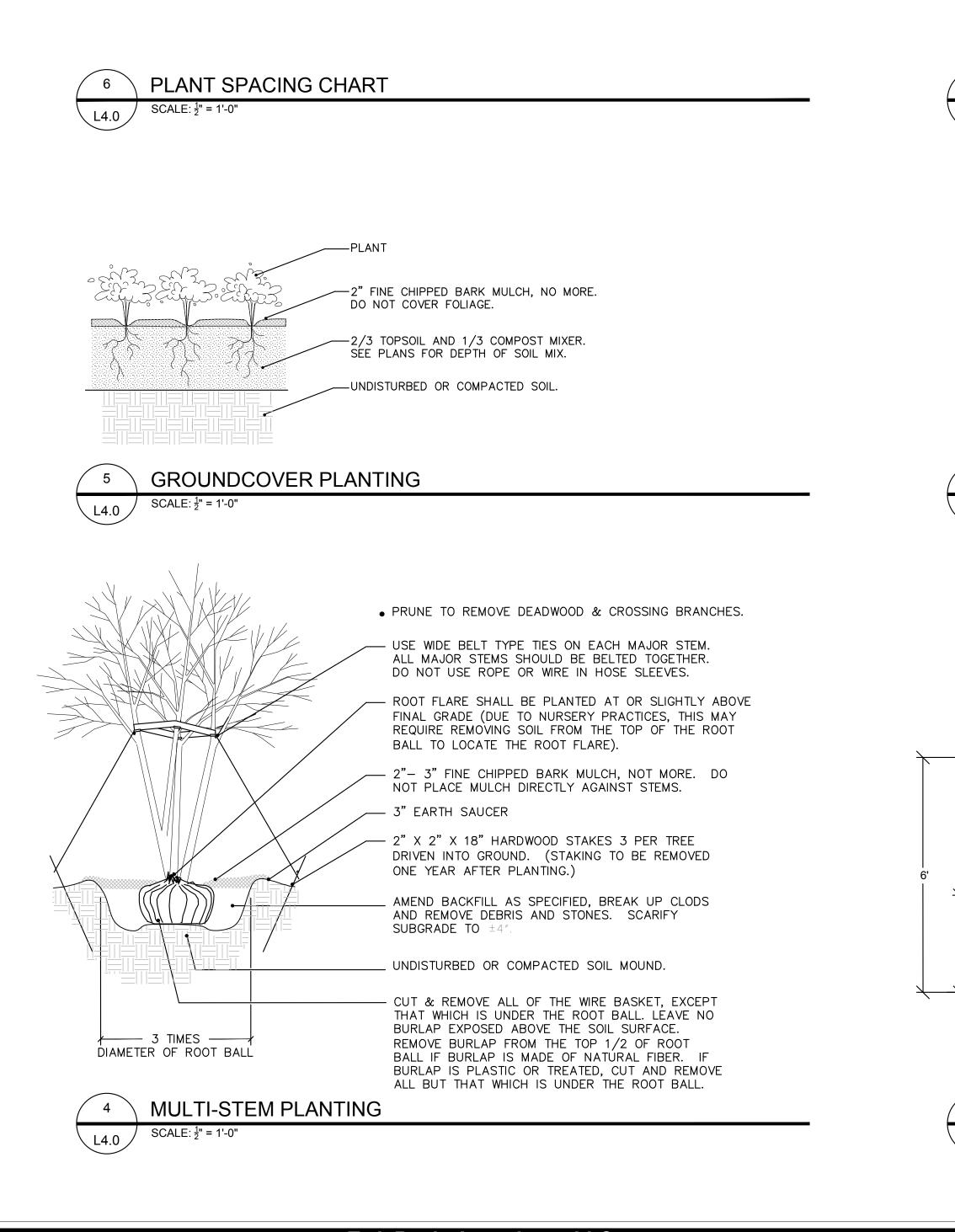
	mjb design by	dja drawn by	11/01/2019	Sunderland Farms Community	sheet no:	
th	mjb checked by	scale 1" =	= 60'	Streets Lighting Plan	L-3.0	

RELEASED FOR PERMITS -11/01/2019 NOT FOR CONSTRUCTION

revisions

date

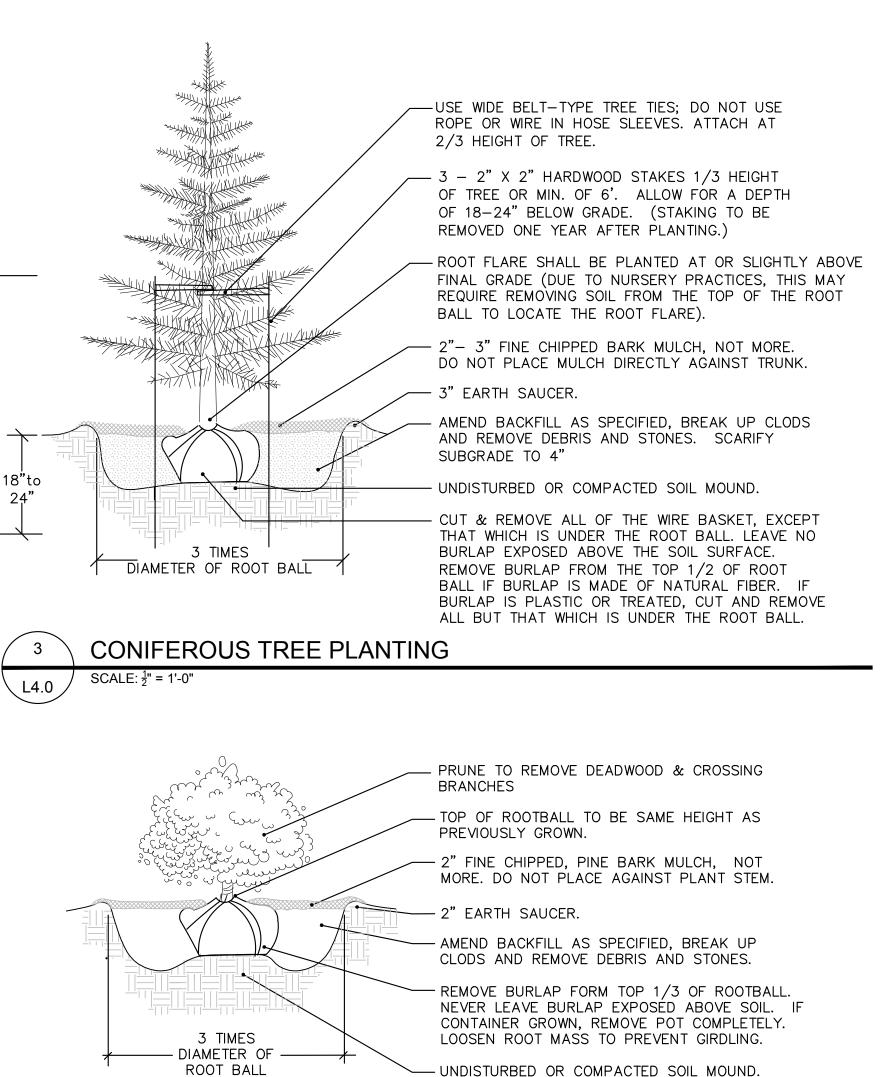

date


Spacing 'D'	Row 'A'	Number of Plants	Area Unit
6" O.C. 8" O.C.	5.2" 6.93"	4.61 2.6	1 SQ. FT.
10" O.C.	8.66"	1.66	
12" O.C.	10.4"	1.15	
15" O.C.	13.0"	7.38	10 SQ. FT.
18" O.C.	15.6"	5.12	
24" O.C.	20.8"	2.91	
30" O.C.	26.0"	1.55	
36" O.C.	30.0"	1.25	
4' O.C.	3.46'	7.25	100 SQ. FT.
5' O.C.	4.38'	4.61	
6' O.C.	5.2'	3.2	
8' O.C.	6.93'	1.8	
10' O.C.	8.66'	1.16	
12' O.C.	10.4'	8	1000 SQ. FT.
15' O.C.	13.0'	5	1000 00.111
20' O.C.	17.3'	2.88	
25' O.C.	21.65'	1.85	
30' O.C.	26.0'	1.29	
40' O.C.	34.6'	7.22	10,000 SQ. FT.

O.C. = ON CENTER

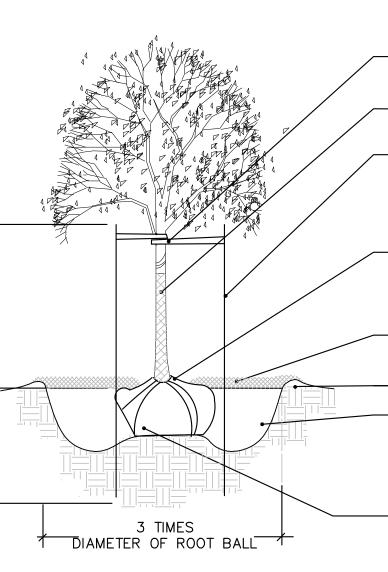
ARE SHOWN EQUIDISTANT FROM EACH OTHER (AS SHOWN)

FOR USE WHEN PLANTS



T. J. Boyle Associates, LLC

landscape architects • planning consultants


301 college street • burlington • vermont • 05401 802 • 658 • 3555

SHRUB PLANTING SCALE: $\frac{1}{2}$ " = 1'-0"

L4.0

6'+

- PRUNE DAMAGED OR BROKEN BRANCHES. INSTALL TREES AND STAKES PLUMB.
- USE WIDE BELT-TYPE TREE TIES; DO NOT USE ROPE OR WIRE IN HOSE SLEEVES.

- UNDISTURBED OR COMPACTED SOIL MOUND.

- REUSABLE PERFORATED PLASTIC TREE WRAP (TO BE REMOVED ONE YEAR AFTER PLANTING).
- 3 2" X 2" HARDWOOD STAKES 1/3 HEIGHT OF TREE OR MIN. OF 72". ALLOW FOR A DEPTH OF 18-24" BELOW GRADE. (STAKING TO BE REMOVED ONE YEAR AFTER PLANTING.)
- ROOT FLARE SHALL BE PLANTED AT OR SLIGHTLY ABOVE FINAL GRADE (DUE TO NURSERY PRACTICES, THIS MAY REQUIRE REMOVING SOIL FROM THE TOP OF THE ROOT BALL TO LOCATE THE ROOT FLARE).
- 2"-3" FINE CHIPPED BARK MULCH, NOT MORE. DO NOT PLACE MULCH DIRECTLY AGAINST TRUNK.
- 2" EARTH SAUCER.
- AMEND BACKFILL AS SPECIFIED, BREAK UP CLODS AND REMOVE DEBRIS AND STONES. SCARIFY SUBGRADE TO 4".

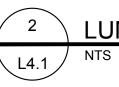
CUT & REMOVE ALL OF THE WIRE BASKET, EXCEPT THAT WHICH IS UNDER THE ROOT BALL. LEAVE NO BURLAP EXPOSED ABOVE THE SOIL SURFACE. REMOVE BURLAP FROM THE TOP 1/2 OF ROOT BALL IF BURLAP IS MADE OF NATURAL FIBER. IF BURLAP IS PLASTIC OR TREATED, CUT AND REMOVE ALL BUT THAT WHICH IS UNDER THE ROOT BALL.

DECIDUOUS TREE PLANTING : ¹/₂" = 1'-0" L4.0 /

mjb _{design by}	dja drawn by	11/01/2019	Sunderland Farms Community	sheet no:
mjb checked by	scale as s	hown	Landscape Details	L-4.0

revisions	date	revisions	date

RELEASED FOR PERMITS -11/01/2019 NOT FOR CONSTRUCTION


50 years, and with a 50 pound load (22.7 kg) placed at 1 foot (305 mm) above its center.

W 0.318"

LU

Ordering guide

by §ignify

EC	
	Po

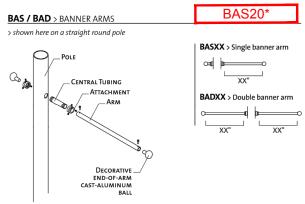
Outdoor

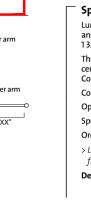
es and Brackets

Made from a one piece, seamless 4" round (102 mm) tube of extruded-aluminum welded over and in a 6-5/8" round (168 mm) extruded-aluminum pole base. The assembly is welded to both the top and bottom of a cast-aluminum anchor plate. A 4-1/2" by 10" (114 by 254 mm) maintenance opening is complete with cover and copper ground lug.

Project:		
Location:		
Cat.No:		
Туре:		
Lamps:	Qty:	
Notes:		

GR Gray Sandtex


NP Natural Alum.


TG

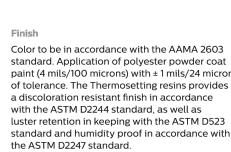
Hammer-tone

TS Hammer-tone Silver

BA > POLE OPTION DETAILS

example: AM6-F-8-DE-BE2TX BKTX 14 F 0.125" **8** 8' DE Pole base buried 5' (1524 mm) in the ground BE2TX Midnight Blue Textured LS Provision for loudspeaker outlet BEGTX Ocean Blue Textured 10 10' PH7 Button-type photoelectric cell (specify operating voltage) BE8TX Royal Blue Textured 12 12' **13** 13' PH8 Quarter-turn type photoelectric cell(specify operating voltage) BG2TX Sandstone Gold Textured **14** 14' DR Duplex receptacle (120V line voltage. only) BKTX Black Textured GFI DR with common ground fault interrupter (120V line voltage only) **15** 15' BRTX Bronze Textured GN4TX Blue Green Textured BA Banner arm U 0.226" **8** 8' PS Plant support GN6TX Forest Green Textured 10 10' GN8TX Dark Forest Green Textured MPL Mid-pole luminaire 12 12' GNTX Green Textured **13** 13' GY3TX Medium Grey Textured **14** 14' RD2TX Burgundy Textured **15** 15' RD4TX Scarlet Textured **16** 16' WHTX White Textured **18** 18'

Specifications


stainless steel hardware.

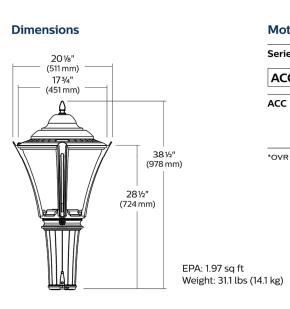
Pole Data

Joint cover Made from two pieces of cast-aluminum mechanically fastened to the junction with

Base cover Made from two pieces of cast aluminum

mechanically fastened to the base with stainless steel hardware.

LUMEC - ROUND ALUMINUM POLE


Note: The recommended method for calculating EPA (Effective Projected Area) is in accordance with AASHTO 2001 standards: for three seconds, the pole is tested in wind gusts equivalent to the strongest winds on record over the past

16 16'

18 18'

20 20'

MPTR MetroScape LED Post Top Urban Luminaire

Motion Respo	nse * (must be or	dered as a separate item) Exa	ample: ACC-120-MR4PGI-BKTX
Series	Voltage	Motion Response module	Finish
ACC			
ACC Accessory	120 120 volt 277 277 volt	MR4PG1Single greyMR4PG2Double greyMR4PW1Single whiteMR4PW2Double white	Consult Lumec's Color Chart for complete specifications.
*OVR option is requir	ed for Motion Resp	onse Accessory	

LED Wattage and Lumen Values for 3000K & 4000K fixtures

		System	Average		LE2			LE3			LE3W			LE4	,		LE5	
Ordering Code:	Total LEDs	current (mA)		Lumen Output ²	Efficacy (LPW)	BUG Rating												
MPTR 3000K																		
35W32LED3K-G2	32	350	37	2875	77.7	B1-U0-G1	2895	78.2	B1-U0-G1	2948	79.7	B1-U0-G1	2893	78.2	B1-U0-G1	3107	84.0	B2-U0-
55W32LED3K-G2	32	530	56	4124	73.8	B1-U0-G1	4152	74.3	B1-U0-G1	4228	75.6	B1-U0-G1	4149	74.2	B1-U0-G1	4457	79.7	B3-U0-
2W32LED3K-G2	32	700	70	5201	74.0	B1-U0-G1	5237	74.5	B1-U0-G1	5333	75.9	B1-U0-G2	5233	74.4	B1-U0-G2	5621	80.0	B3-U0-
97W32LED3K-G2	32	1050	104	7172	68.8	B1-U0-G1	7221	69.2	B1-U0-G2	7353	70.5	B1-U0-G2	7216	69.2	B1-U0-G2	7751	74.3	B3-U0-
55W48LED3K-G2	48	350	54	4313	79.3	B1-U0-G1	4342	79.8	B1-U0-G1	4422	81.3	B1-U0-G1	4339	79.8	B1-U0-G1	4661	85.7	B3-U0-
BOW48LED3K-G2	48	530	81	6186	76.1	B1-U0-G1	6229	76.6	B1-U0-G2	6342	78.0	B1-U0-G2	6224	76.6	B1-U0-G2	6686	82.2	B3-U0-
08W48LED3K-G2	48	700	105	7802	74.0	B1-U0-G1	7855	74.5	B1-U0-G2	7999	75.9	B1-U0-G2	7850	74.5	B1-U0-G2	8432	80.0	B3-U0-
40W48LED3K-G2	48	1050	157	10758	68.7	B2-U0-G2	10832	69.2	B2-U0-G2	11030	70.5	B2-U0-G2	10824	69.2	B2-U0-G2	11627	74.3	B4-U0-
70W64LED3K-G2	64	350	73	5750	78.8	B1-U0-G1	5790	79.3	B1-U0-G1	5896	80.8	B1-U0-G2	5785	79.2	B1-U0-G2	6215	85.1	B3-U0-
10W64LED3K-G2	64	530	105	8248	78.6	B2-U0-G2	8305	79.1	B1-U0-G2	8457	80.5	B1-U0-G2	8299	79.0	B1-U0-G2	8914	84.9	B3-U0-
90W80LED3K-G2	80	350	91	7188	79.3	B1-U0-G1	7237	79.8	B1-U0-G2	7370	81.3	B1-U0-G2	7232	79.7	B1-U0-G2	7768	85.6	B3-U0-
35W80LED3K-G2	80	530	136	10310	76.1	B2-U0-G2	10381	76.6	B2-U0-G2	10571	78.0	B2-U0-G2	10373	76.6	B2-U0-G2	11143	82.2	B4-U0-
MPTR 4000K																		
35W32LED4K-G2	32	350	37	3462	93.6	B1-U0-G1	3624	97.9	B1-U0-G1	3610	97.6	B1-U0-G1	3650	98.6	B1-U0-G1	3695	99.9	B3-U0-
55W32LED4K-G2	32	530	56	4966	88.8	B1-U0-G1	5198	93.0	B1-U0-G1	5178	92.6	B1-U0-G2	5235	93.6	B1-U0-G2	5300	94.8	B3-U0-
72W32LED4K-G2	32	700	70	6263	89.1	B1-U0-G1	6556	93.3	B1-U0-G2	6531	92.9	B1-U0-G2	6603	93.9	B1-U0-G2	6684	95.1	B3-U0-
97W32LED4K-G2	32	1050	104	8636	82.8	B2-U0-G2	9040	86.7	B1-U0-G2	9005	86.3	B1-U0-G2	9105	87.3	B1-U0-G2	9217	88.4	B4-U0-
55W48LED4K-G2	48	350	54	5255	96.6	B1-U0-G1	5349	98.3	B1-U0-G1	5422	99.7	B1-U0-G2	5362	98.6	B1-U0-G2	5659	104.0	B3-U0-
80W48LED4K-G2	48	530	81	7538	92.7	B1-U0-G1	7673	94.4	B1-U0-G2	7777	95.7	B1-U0-G2	7691	94.6	B1-U0-G2	8117	99.8	B3-U0-
I08W48LED4K-G2	48	700	105	9507	90.2	B2-U0-G2	9677	91.8	B2-U0-G2	9808	93.1	B2-U0-G2	9700	92.0	B2-U0-G2	10237	97.1	B4-U0-
40W48LED4K-G2	48	1050	157	13109	83.8	B2-U0-G2	13344	85.3	B2-U0-G2	13525	86.4	B2-U0-G3	13376	85.5	B2-U0-G2	14116	90.2	B4-U0-
70W64LED4K-G2	64	350	73	7007	96.0	B1-U0-G1	7132	97.7	B1-U0-G2	7229	99.0	B1-U0-G2	7150	97.9	B1-U0-G2	7545	103.4	B3-U0-
10W64LED4K-G2	64	530	105	10050	95.7	B2-U0-G2	10231	97.4	B2-U0-G2	10369	98.8	B2-U0-G2	10255	97.7	B2-U0-G2	10822	103.1	B4-U0-
90W80LED4K-G2	80	350	91	8759	96.6	B2-U0-G2	8916	98.3	B1-U0-G2	9036	99.6	B2-U0-G2	8937	98.5	B1-U0-G2	9431	104.0	B4-U0-
35W80LED4K-G2	80	530	136	12563	92.7	B2-U0-G2	12788	94.4	B2-U0-G2	12962	95.7	B2-U0-G2	12819	94.6	B2-U0-G2	13528	99.8	B4-U0-
Actual perform etc.; highly rec Note : Some da	omme	nded to	confirm	performa	ince with	a layout -	contact	Applicati	ons at sigr				ht loss fa	ictor,				

MetroScape-MPTR-spec 01/19 page 2 of 5

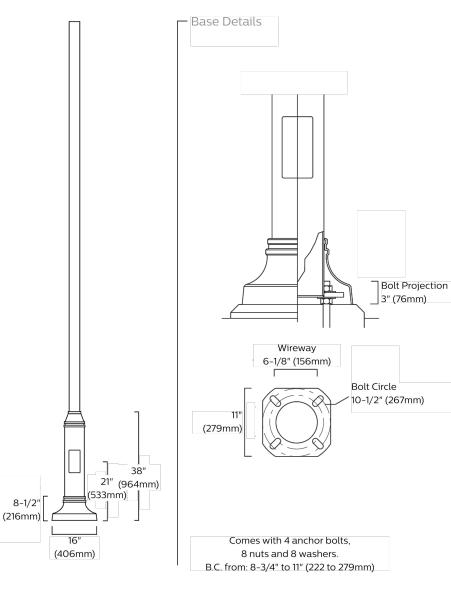
L4.1 NTS

LUMEC LIGHT POST TOP

T. J. Boyle Associates, LLC

landscape architects • planning consultants

301 college street • burlington • vermont • 05401 802 • 658 • 3555


*SLIDING BANNER ARM MOUNT AT HEIGH
OF 12" BELOW THE LAMP MOUNTING RING
OR FITTER

Specifications: Lumec's Banner Arms **BAS / BAD** are designed to fit on a round, fluted, square and multi-sided pole, using a central tubing inserted through two opposite 13/8" (35 mm) holes. The aluminum banner arm [1 1/16" diameter (27 mm)] easily slip-fits into the central tubing and it is secured with the attachment by stainless steel hardware. Completing the installation are two end-of-arm decorative casting. Consult factory for all banner arm heights and orientations. Optional Lily Flower end-of-arm casting available (LF option). Specify width of banner(s) as the xx dimension in the ordering number. Order Banner in 1" (25 mm) increments only (ex: BAS11) > Lumec strongly recommends that the banner arm should be at least 8 feet from the ground.

Decorative end-of-arm option 😤

Pole Family	Catalog Number	Nominal Height	Nominal Height	Tenon Section	Tenon Section	Wall Thickness	Wall Thickness	Weight (lbs)	Weight (kg)	EPA Rating 90 MPH	EPA Rating 110 MPH	EPA Rating 120 MPH	EPA Rating 150 MPH	Anchor Bolts	Anchor Bolts
		(ft)	(m)	(in)	(mm)	(in)	(mm)			(sq. ft.)	(sq. ft.)	(sq. ft.)	(sq. ft.)	(in)	(mm)
AM6	AM6F-8	8	2.44	4	102	0.125	3.2	27	12	15.65	10.47	8.77	5.61	3/4-20	19-508
AM6	AM6U-8	8	2.44	4	102	0.226	5.7	37	17	27.82	18.85	15.86	10.21	3/4-20	19-508
AM6	AM6F-10	10	3.05	4	102	0.125	3.2	31	14	11.35	7.39	6.1	3.83	3/4-20	19-508
AM6	AM6U-10	10	3.05	4	102	0.226	5.7	41	19	20.61	13.73	11.47	7.31	3/4-20	19-508
AM6	AM6F-12	12	3.66	4	102	0.125	3.2	35	16	8.54	5.34	4.32	2.64	3/4-20	19-508
AM6	AM6U-12	12	3.66	4	102	0.226	5.7	45	20	15.92	10.42	8.61	5.43	3/4-20	19-508
AM6	AM6F-13	13	3.97	4	102	0.125	3.2	36	16	7.43	4.53	3.62	2.15	3/4-20	19-508
AM6	AM6U-13	13	3.97	4	102	0.226	5.7	46	21	14.17	9.13	7.52	4.7	3/4-20	19-508
AM6	AM6F-14	14	4.27	4	102	0.125	3.2	38	17	6.49	3.83	3	1.74	3/4-20	19-508
AM6	AM6U-14	14	4.27	4	102	0.226	5.7	48	22	12.64	8.05	6.57	4.06	3/4-20	19-508
AM6	AM6F-15	15	4.57	4	102	0.125	3.2	40	18	5.67	3.21	2.45	1.37	3/4-20	19-508
AM6	AM6U-15	15	4.57	4	102	0.226	5.7	50	23	11.32	7.08	5.73	3.5	3/4-20	19-508
AM6	AM6U-16	16	4.88	4	102	0.226	5.7	52	24	10.21	6.25	5.02	3.03	3/4-20	19-508
AM6	AM6W-16	16	4.88	4	102	0.318	8.1	74	34	14.43	9.18	7.49	4.61	3/4-20	19-508
AM6	AM6U-18	18	5.49	4	102	0.226	5.7	55	25	8.07	4.71	3.68	2.11	3/4-27	19-686
AM6	AM6W-18	18	5.49	4	102	0.318	8.1	87	39	11.65	7.17	5.75	3.48	3/4-27	19-686
AM6	AM6W-20	20	6.1	4	102	0.318	8.1	96	44	9.18	5.58	4.36	2.54	3/4-27	19-686

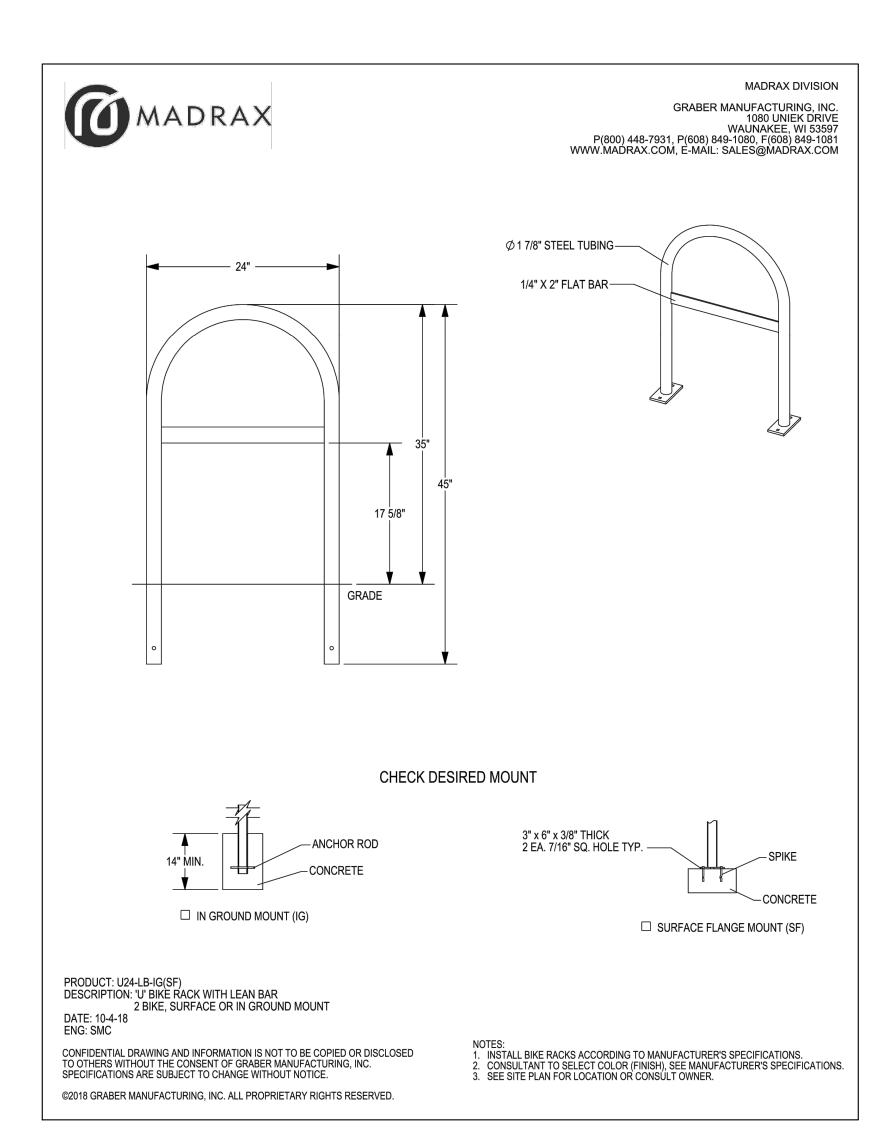
Dimensions

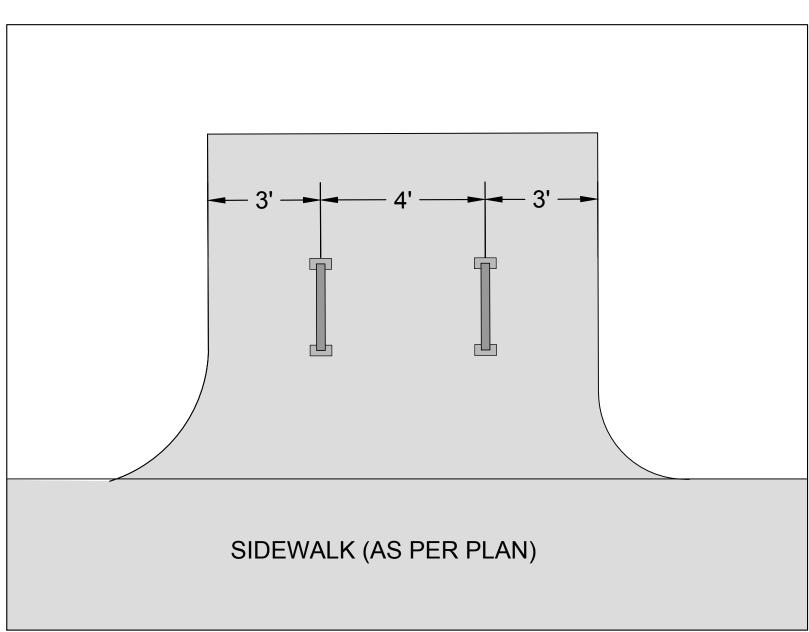
pondercout	
mils/24 microns	
sins provides	
ccordance	
well as	
e ASTM D523	
cordance with	

Lumec MetroScape LED post top luminaire features flexible, robust energysaving solutions for heritage-styled urban architectural lighting. Crowned with an ornamental hood, the post top model comes with a flat lens to highlight the thinness of the LEDs. The luminaire provides attractive lighting at night, adding appeal to the surroundings and promoting safe use of the environment. Includes Service Tag, innovative way to provide assistance throughout the life of the product

Project:	
Location:	
Cat.No:	
Туре:	
Lamps:	Qty:

Series MPTR	LED Module	сст 4K	Gen.	Optical System	Voltage	Driver	Luminaire option	Mounting	Pole	Finish BKTX
MPTR ¹ MetroScape LED post top luminaire	35W32LED ² 55W32LED ² 72W32LED 97W32LED ² 55W48LED 108W48LED 108W48LED 140W48LED ² 70W64LED 110W64LED 90W80LED 135W80LED	3K 3000K 4K 4000K	G2 Gen2	LE2 Type II (ASYM) flat lens LE3 Type III (ASYM) flat lens LE3W ³ Type III (ASYM) wide flat lens LE4 Type IV (ASYM) flat lens LE5 Type V (SYMM) flat lens	120 120V 208 208V 240V 240V 2777 2777V 347 347V 480 480V	CDMG ² Dynadimmer for standard dimming (consult complete Dynadimmer scenarios on pg 3) CLO ² Pre-set driver to manage lumen depreciation AST ² Pre-set driver for progressive start-up OTL ² Pre-set driver to signal end of life of the lamp DALI ² Pre-set driver compatible with the DALI control system DMG O-10 volt	HS House Side Shield OVR Dynadimmer override function PH8 Photoelectric cell PH9 Shorting Cap PHXL ² Photoelectric cell, extended life RCD ⁴ 5-Pin receptacle for dimming photoe RCD7 ⁴ 7-Pin receptacle for photoelectric cel TN3 ⁵ Fitter to fit over a 3" by 4" (102 mm) long to TN3.5 ⁵	'(76 mm) O.D. enon '/2" (89 mm) O.	Consult the Signify web site for details and the complete line of Poles	BE2TX BE6TX BE6TX BE8TX BG2TX BKTX GN4TX GN4TX GN4TX GN5TX GN7X GR GY3TX NP RD2TX RD4TX TG TS WHTX (consult pg 4 for code descriptions


1. DMG 0-10V driver come standard.4. Use of photoelectric cell or shorting cap is required to ensure proper illumination.2. The 347V and 480V are not available.5. Not available with Motion Response.


MetroScape-MPTR-spec 01/19 page 1 of 5

3. Not available with HS option.

mjb design by	dja drawn by	11/01/2019	Sunderland Farms Community	sheet no: T / 1	
mjb checked by scale as shown			Lighting Details	L-4.1	

BIKE RACK DETAILS

L4.2 / NOT TO SCALE

revisions	date	revisions	date	

L4.2 /

White Mountain Shelter Model 98-0CT020-6T

Roof Style: Hip

Options

tile, etc.

Wood wraps

Facades

Trim, and Wood wraps

Hot dipped galvanized

Gutters & downspouts

environments

Options Shown: Asphalt shingles, Rails,

Wood post options: square, rectangular, or round

Steel post options: square, rectangular, or round

• Roof options: hi rib, standing seam, cedar, asphalt,

• Stain or clear sealer for wood members

 Increased wind & snow load available Variety of roof pitches available

Cupolas, weather vanes, clerestory

2x6 or 3x6 tongue & groove roof decking

Chemical resistant Natur-Kote primer for harsh

• Factory installation or on-site technical assistance.

June 2014

Specifications

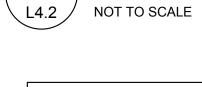
Description: Octagon **Size:** 20' **Roof Pitch:** 6/12

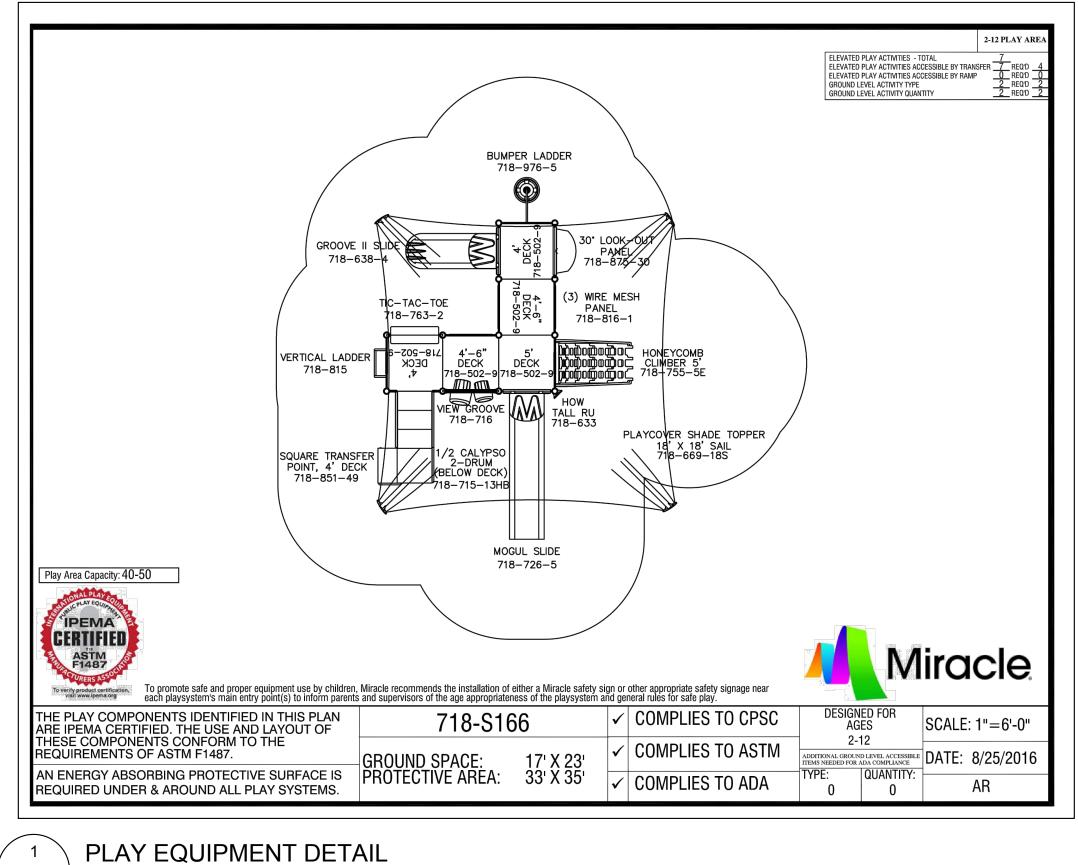
Features

- Clear spans
- Wood or steel posts Glu-laminated or steel beam
- Size range: 20'-90' Non-bird nesting or perch design
- Polyester powder coated
- Wind load: 90 mph class C Snow Load: 30 lbs
- Custom designs available

PO Box 270, Baker City, OR 97814 (541) 523-0224 (800) 252-8475 Fax (541) 523-0231 www.naturalstructures.com - info@naturalstructures.com

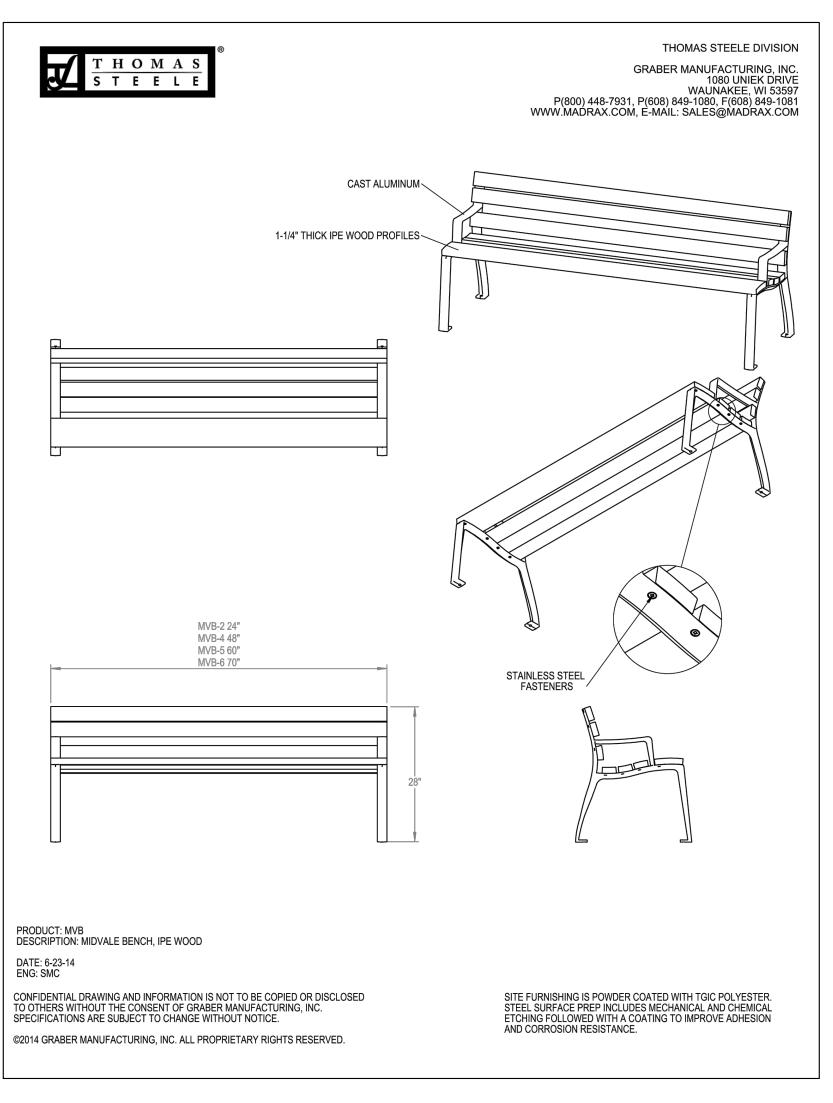
GAZEBO DETAILS


L4.2 / NOT TO SCALE


MIRACLE: ARCH SWING WITH 2 BELT SEATS

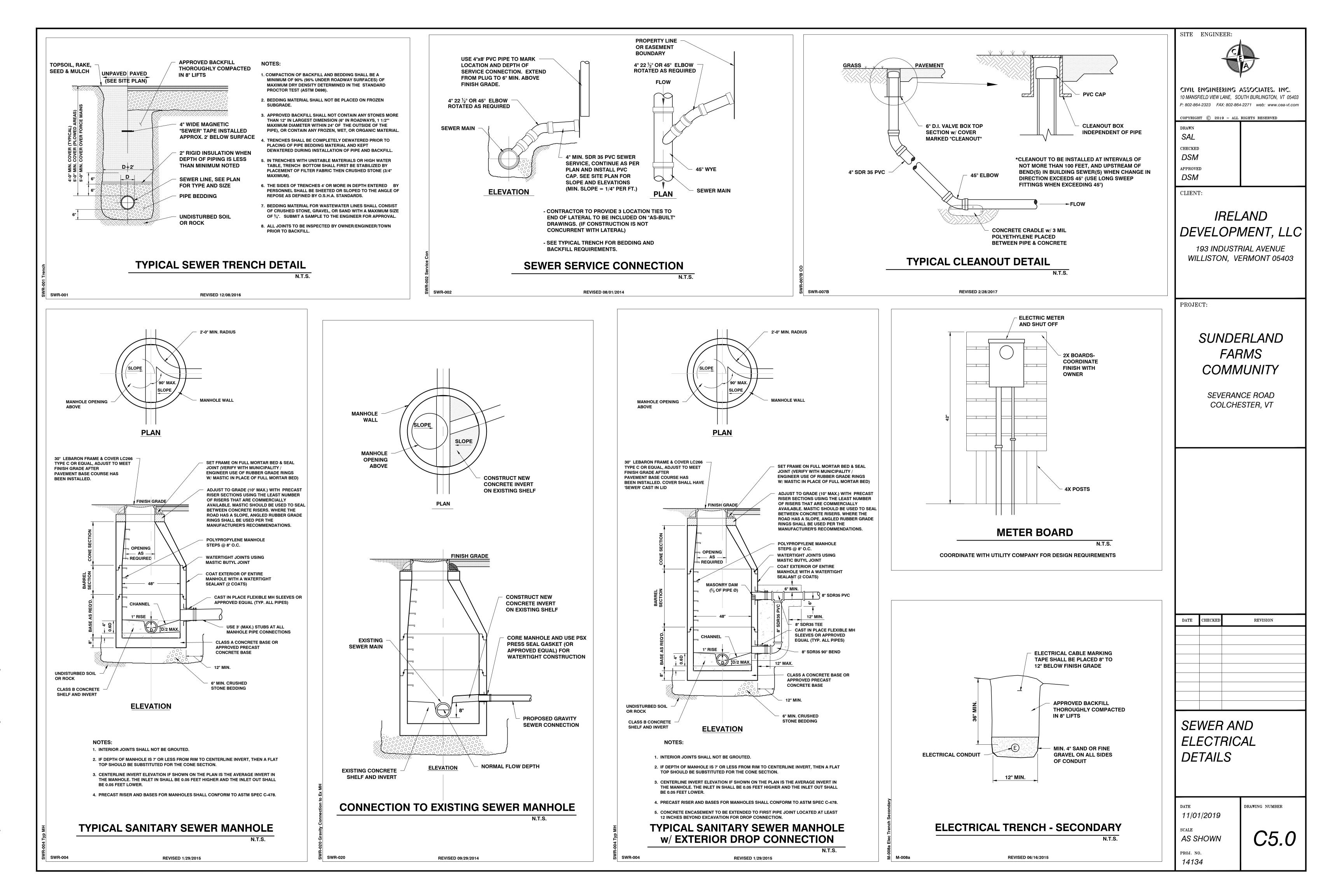
SWING DETAIL

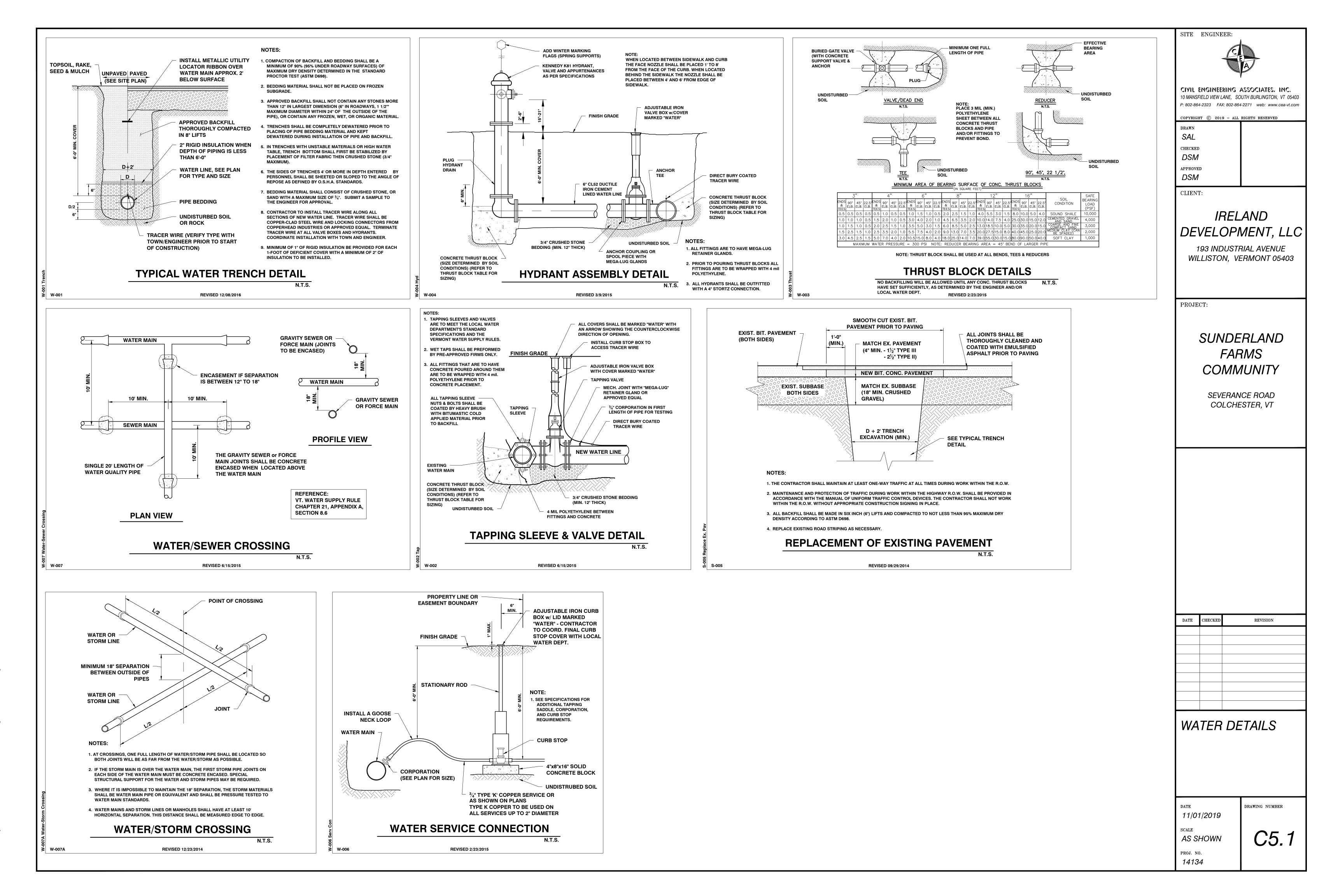
NOT TO SCALE

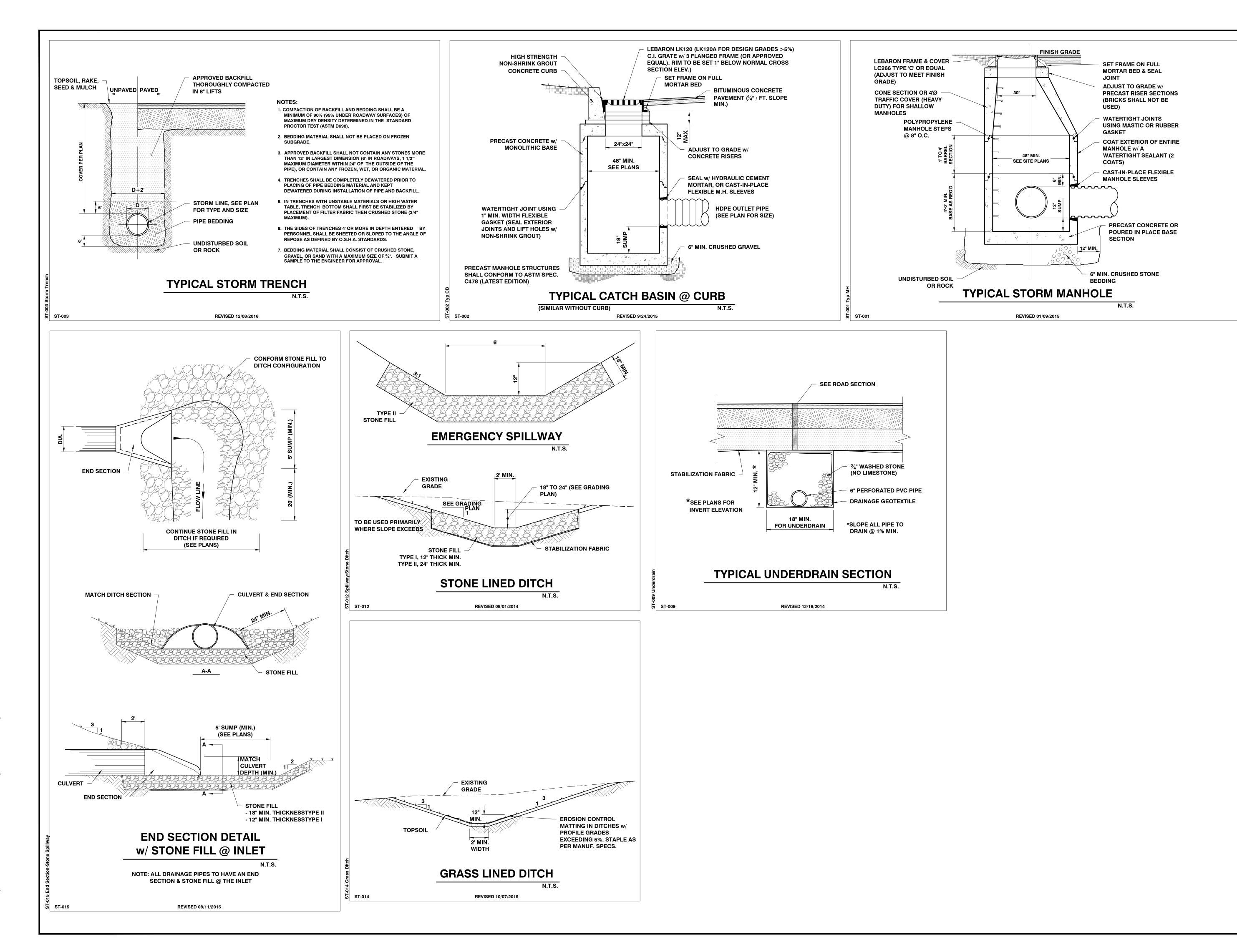


2

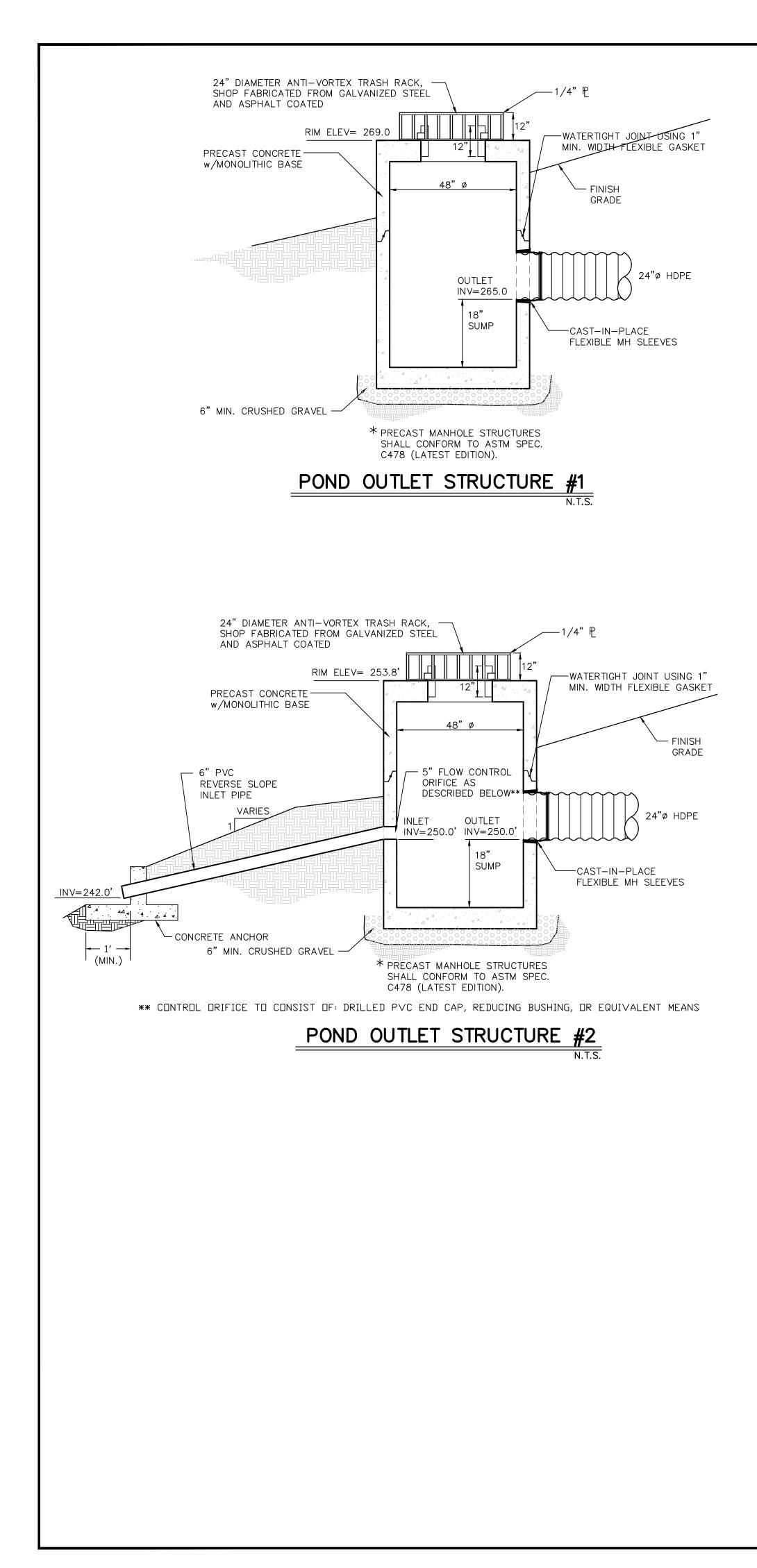
T. J. Boyle Associates, LLC

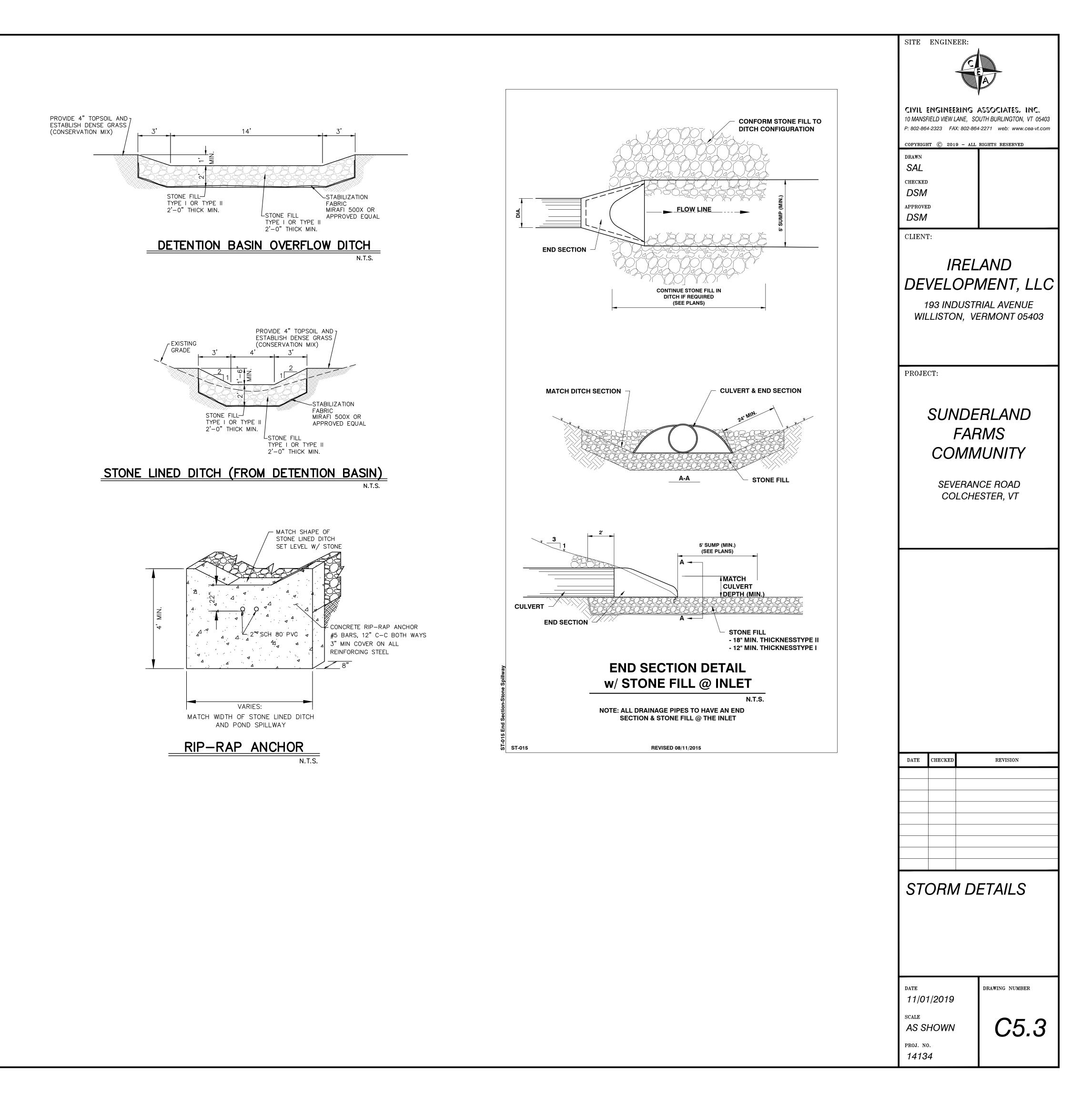

landscape architects • planning consultants 301 college street • burlington • vermont • 05401 802 • 658 • 3555

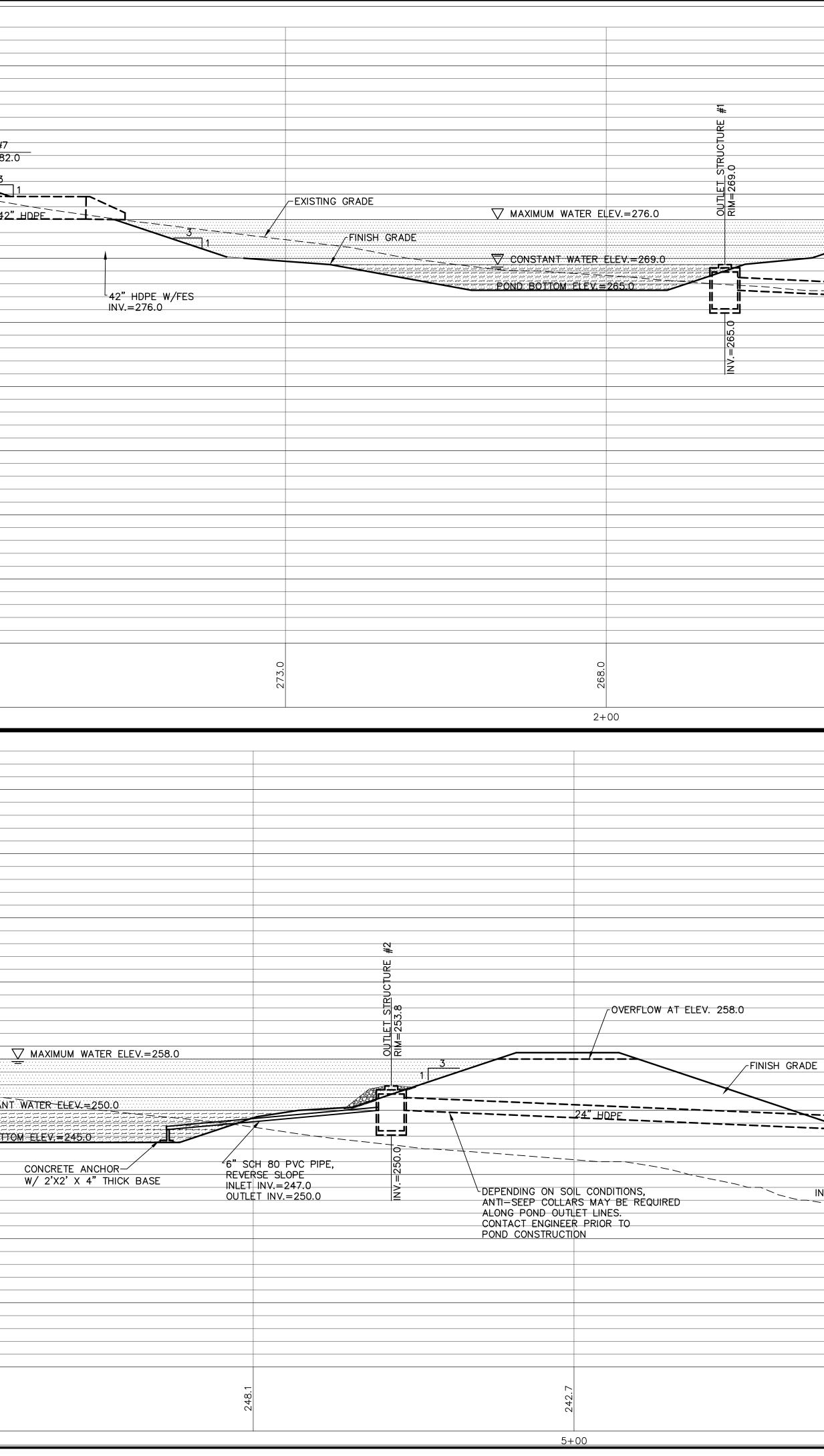



BENCH DETAIL

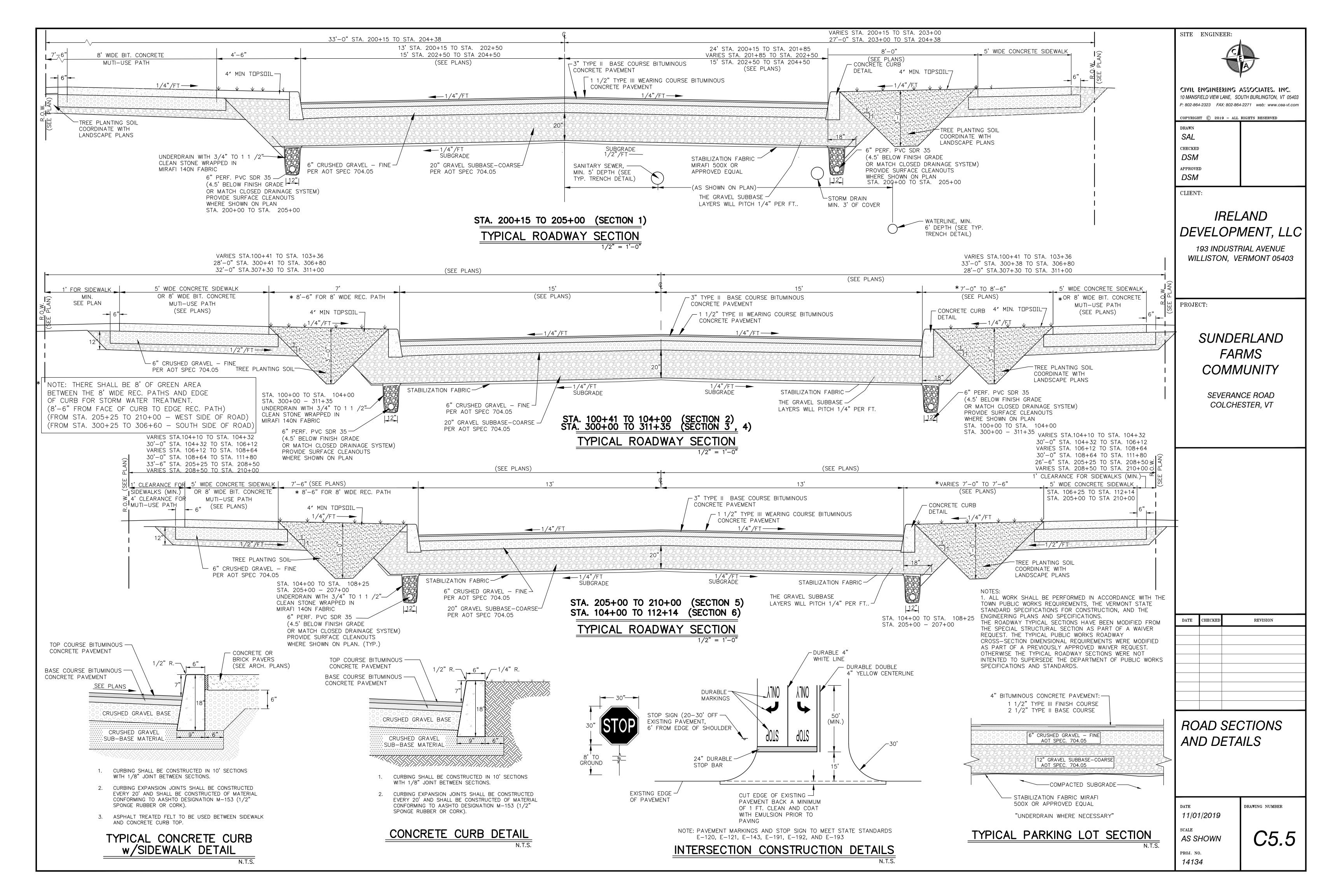
L4.2 / AS NOTED

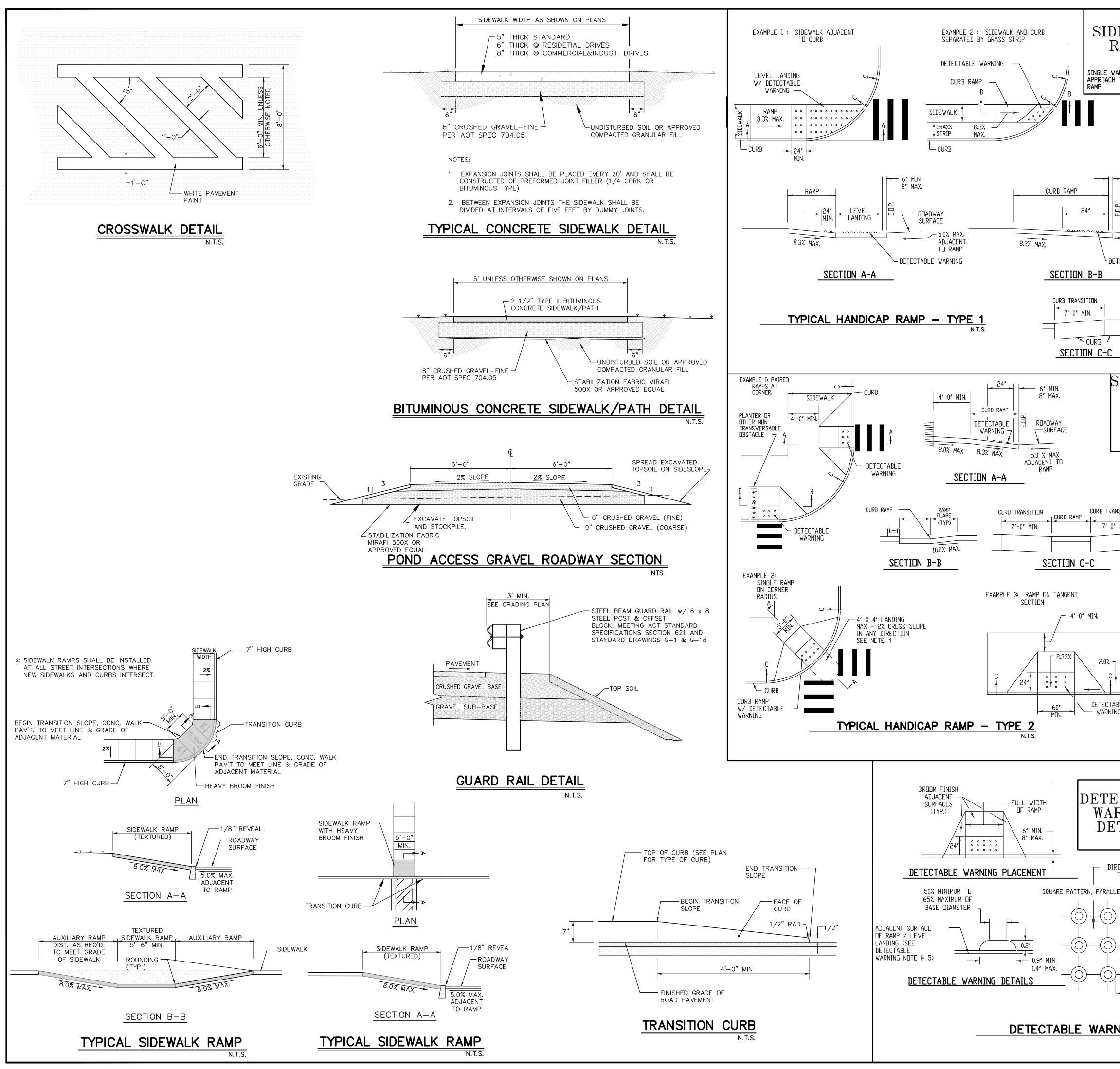

mjb design by	dja drawn by	11/01/2019 _{date}	Sunderland Farms Community	sheet no:
mjb checked by	scale as s	shown	Hardscape Details	L-4.2



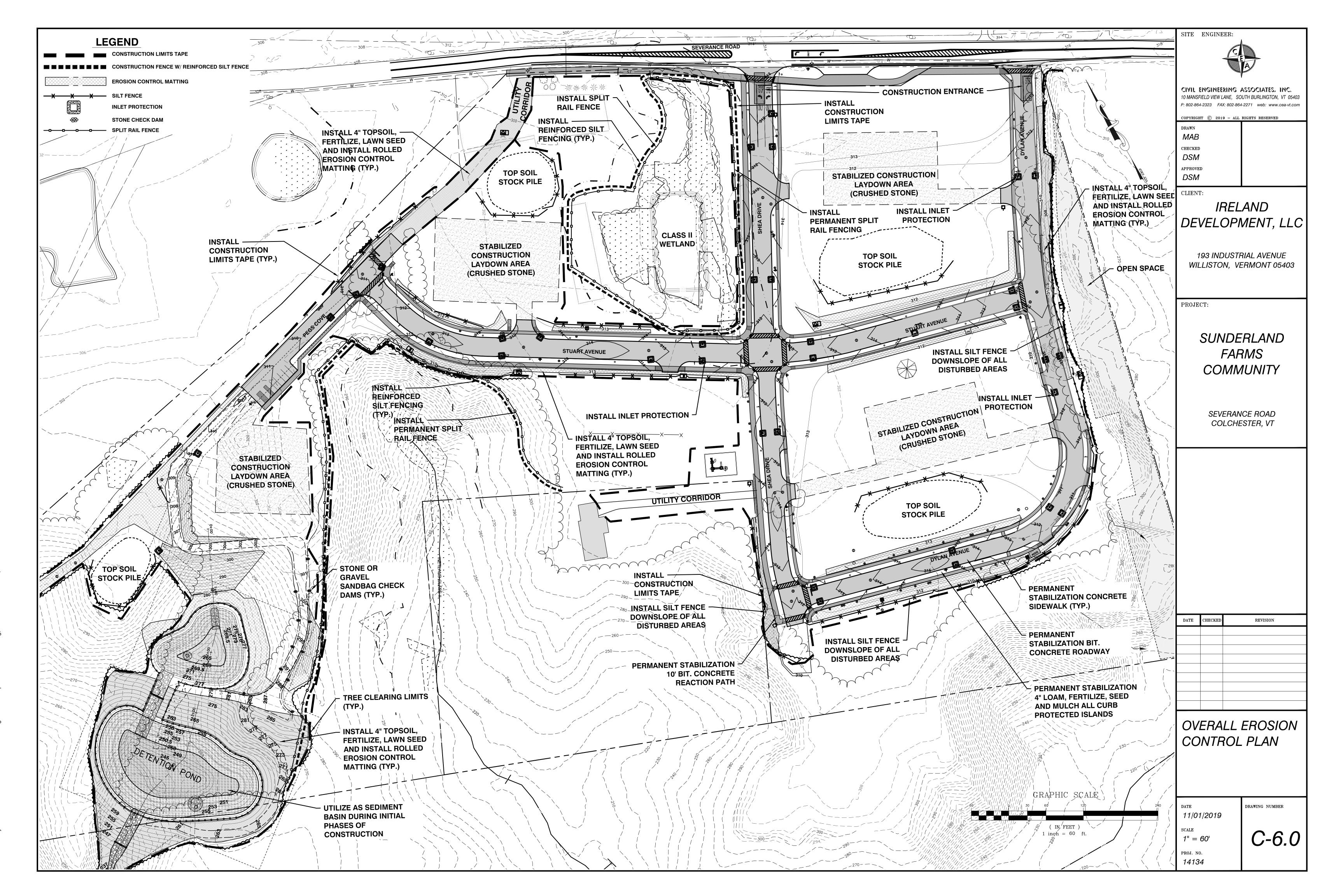


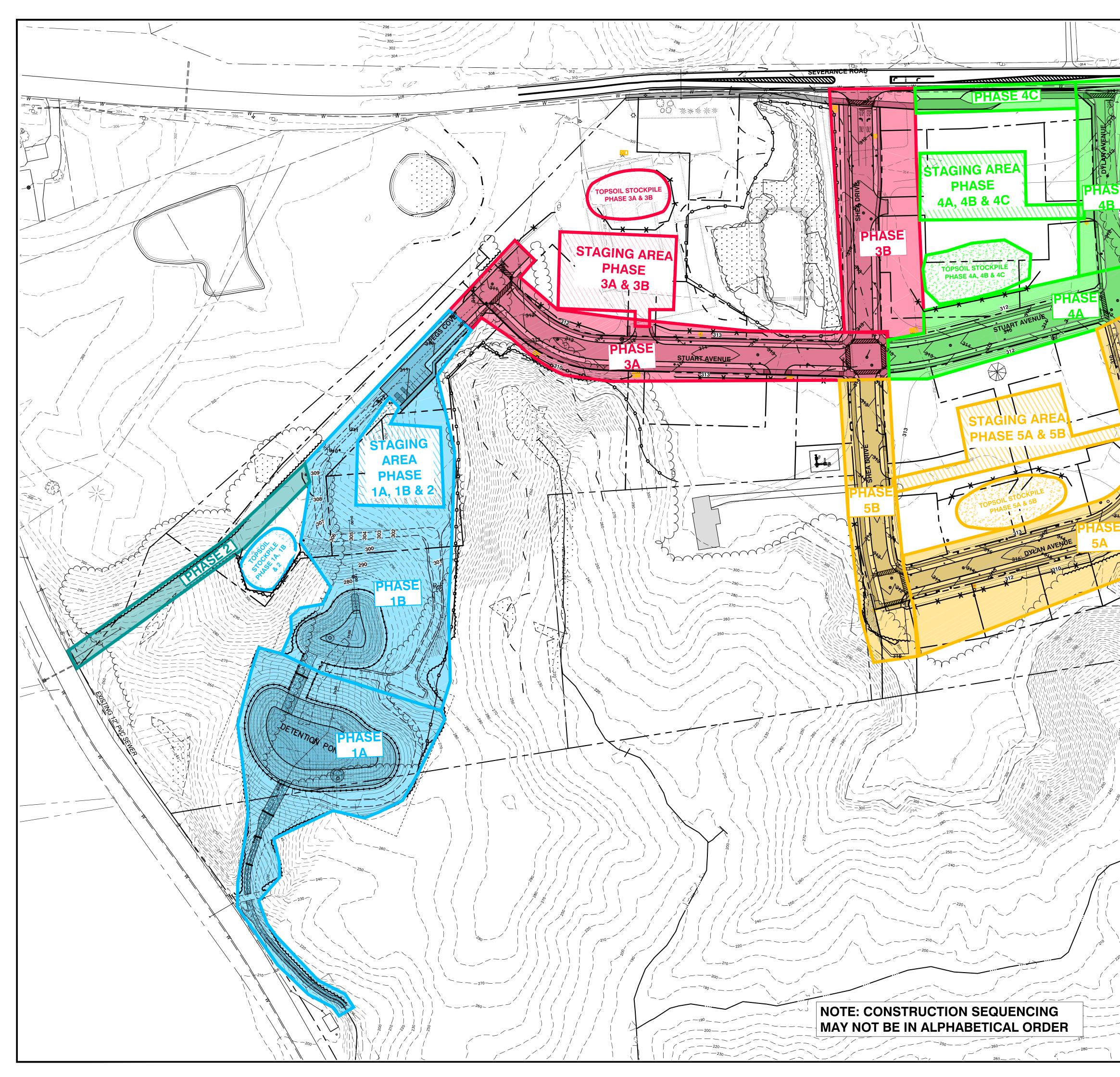
SITE ENGINEER:			
C			
CIVIL ENGINEERING 10 MANSFIELD VIEW LANE, SC P: 802-864-2323 FAX: 802-864	UTH BURLINGTON, VT 05403 4-2271 web: www.cea-vt.com		
COPYRIGHT © 2019 – ALL DRAWN	RIGHTS RESERVED		
SAL checked			
DSM			
APPROVED DSM			
CLIENT:			
	AND MENT, LLC		
	RIAL AVENUE		
	ERMONT 05403		
PROJECT:			
	RLAND RMS		
	IVIS IUNITY		
	ICE ROAD		
COLCHE	ESTER, VT		
	DEVICION		
DATE CHECKED	REVISION		
STORM DETAILS			
date 11/01/2019	DRAWING NUMBER		
SCALE			
AS SHOWN	C5.2		
proj. no. 14134			

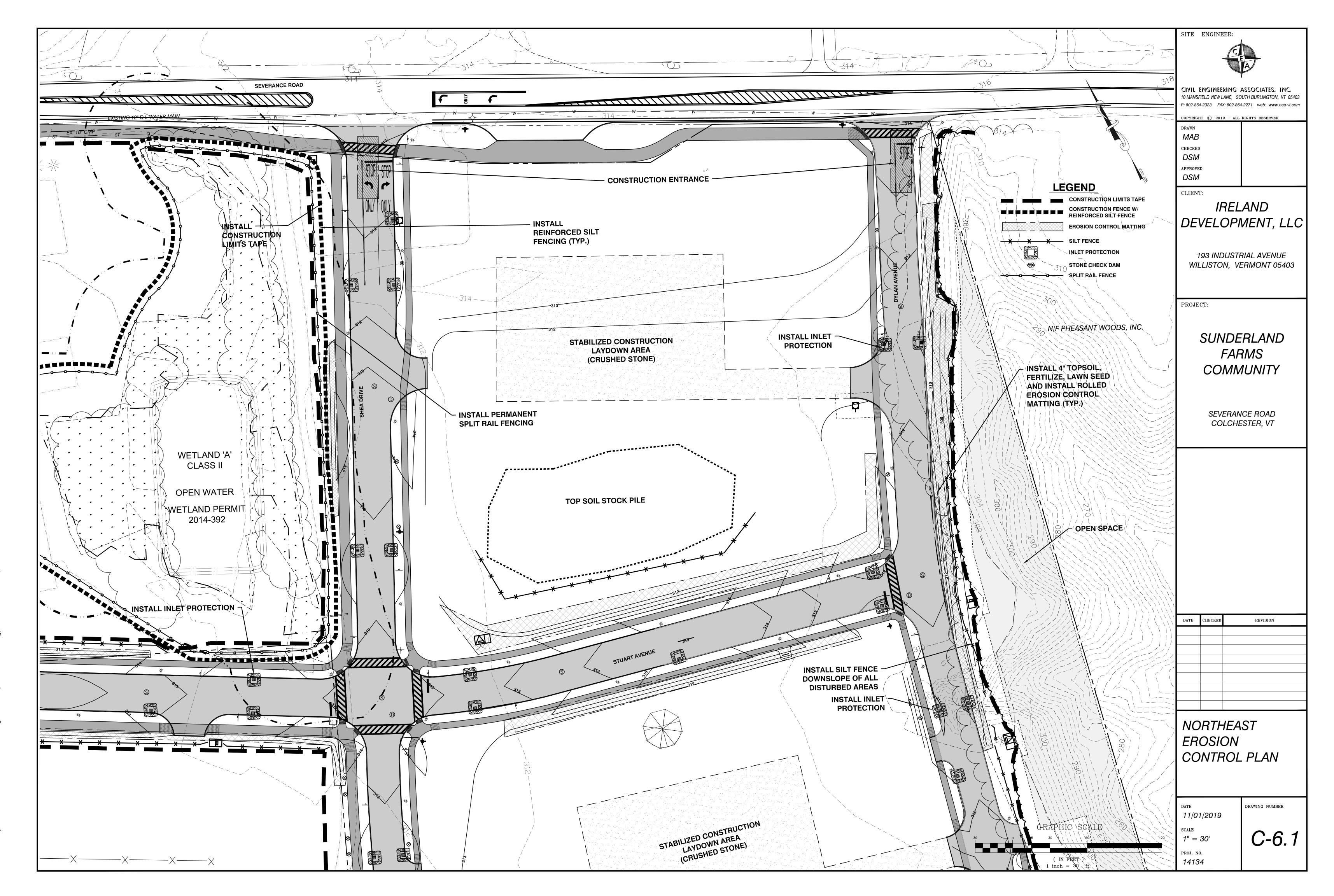


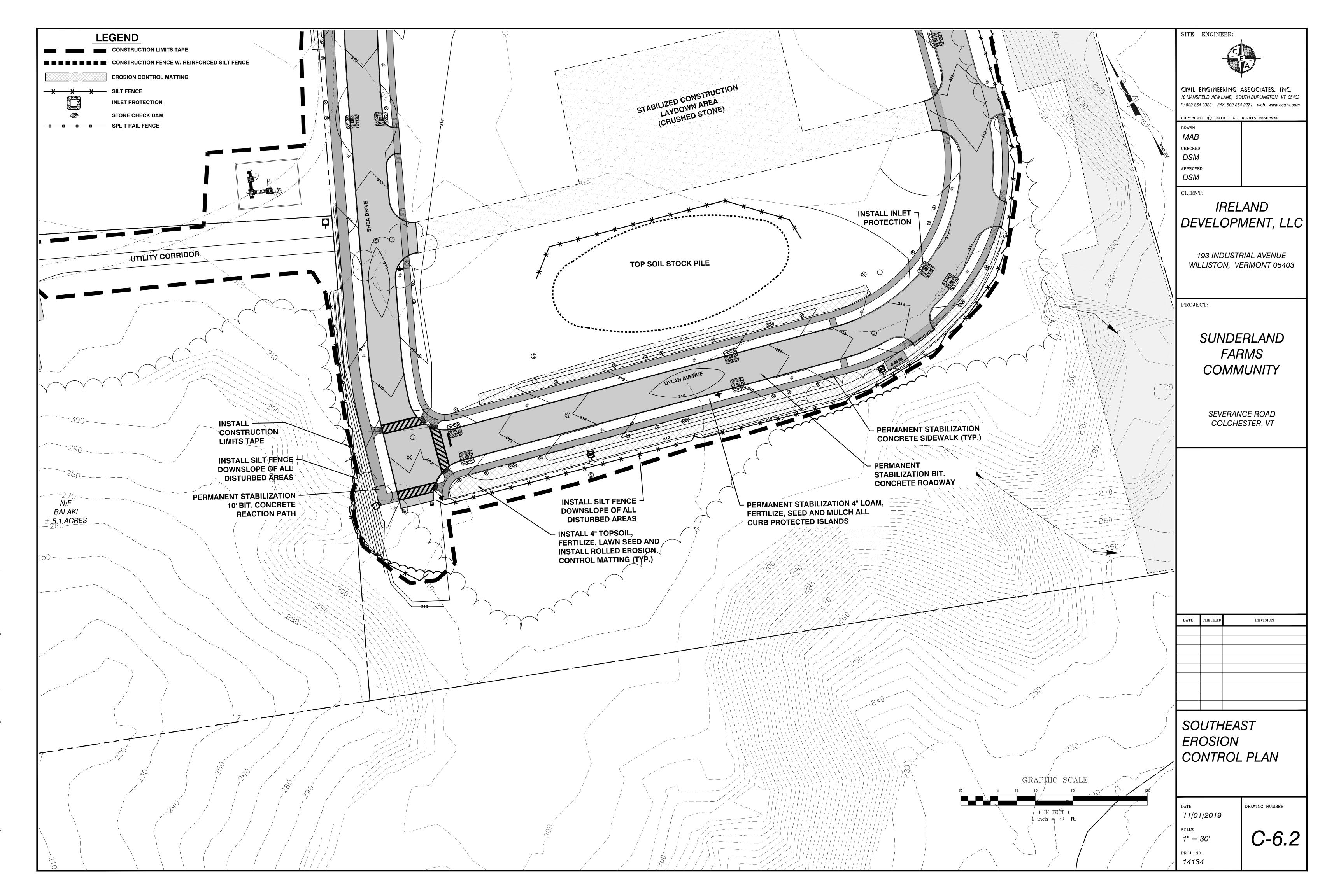


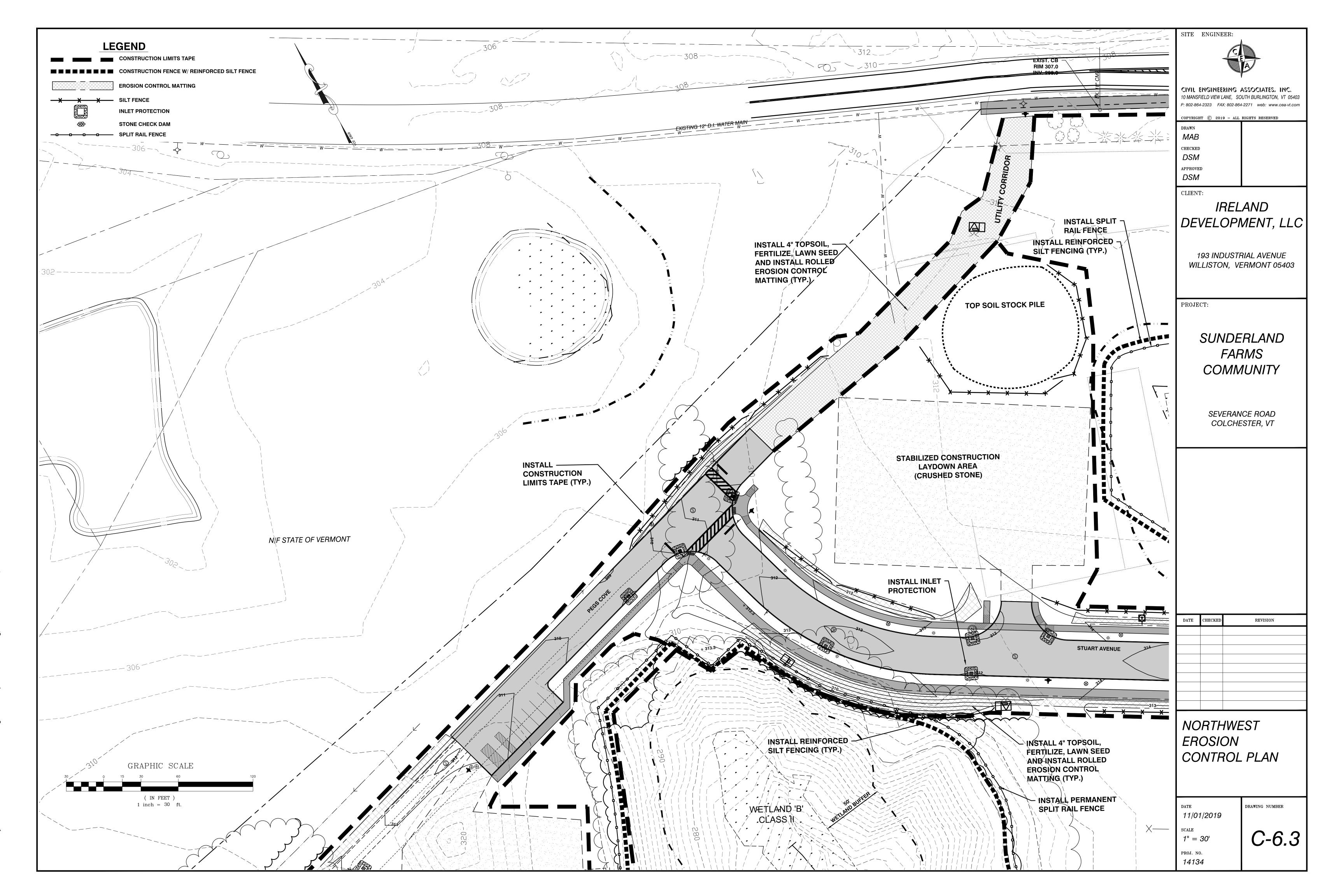
	PROPOSED BUILDING <u>GARAGE ENTRANCE DRIVE</u>				1
FFE <u>302.5</u>	304	\searrow			
	300 		25		
	296		2.5		
292	EXISTIN	G GRADE			
288			FINISH GRAD		DMH #7
284					RIM=282
280					3
					42
276] Ľ	┝╴═╝ ╤╶═╝
272					
268					6.4
264				276.	0UT=276.4
260					
256					, NI
252					
248					
244					
240					
236					
232					
228					
224					
220					
216					
212					
			DATUM 1 210.0	<u>E'LE'V</u> 10	
				280.0	1
				58	
0+	-00			1+	-00
-292-					
288					
284					
-280					
276					
272					
268					
<u>264</u>					
260					
256	INV.=260.0	FINI	SH GRADE		
252					
248					CONSTAN
244				EEEP(<u>IND BOTT</u>
240					
236					
-232-					
-228					
-224					
-220-					
216					
212					
		260.0	0 32 22		
		2(2		
00			4+	-00	

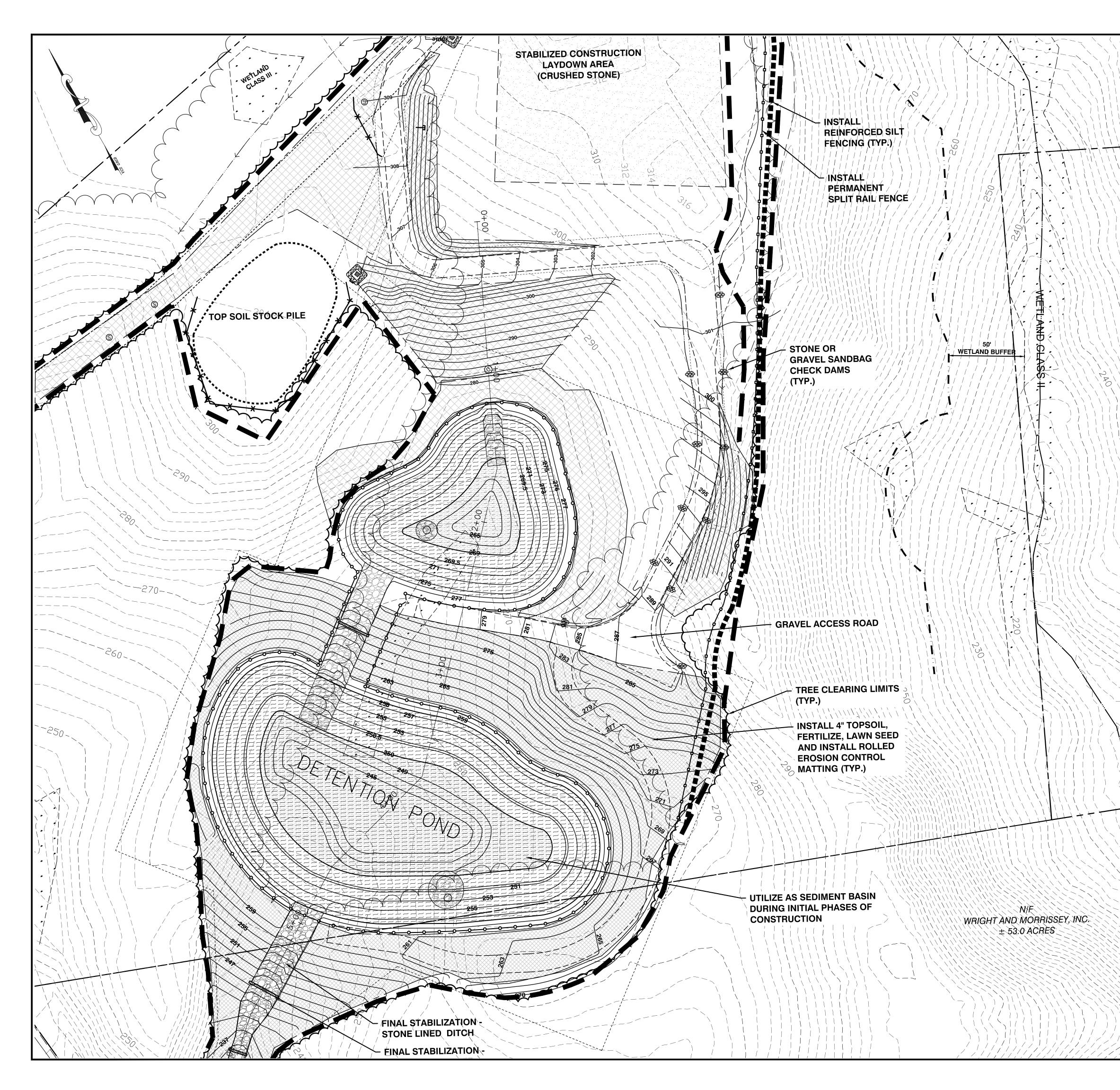


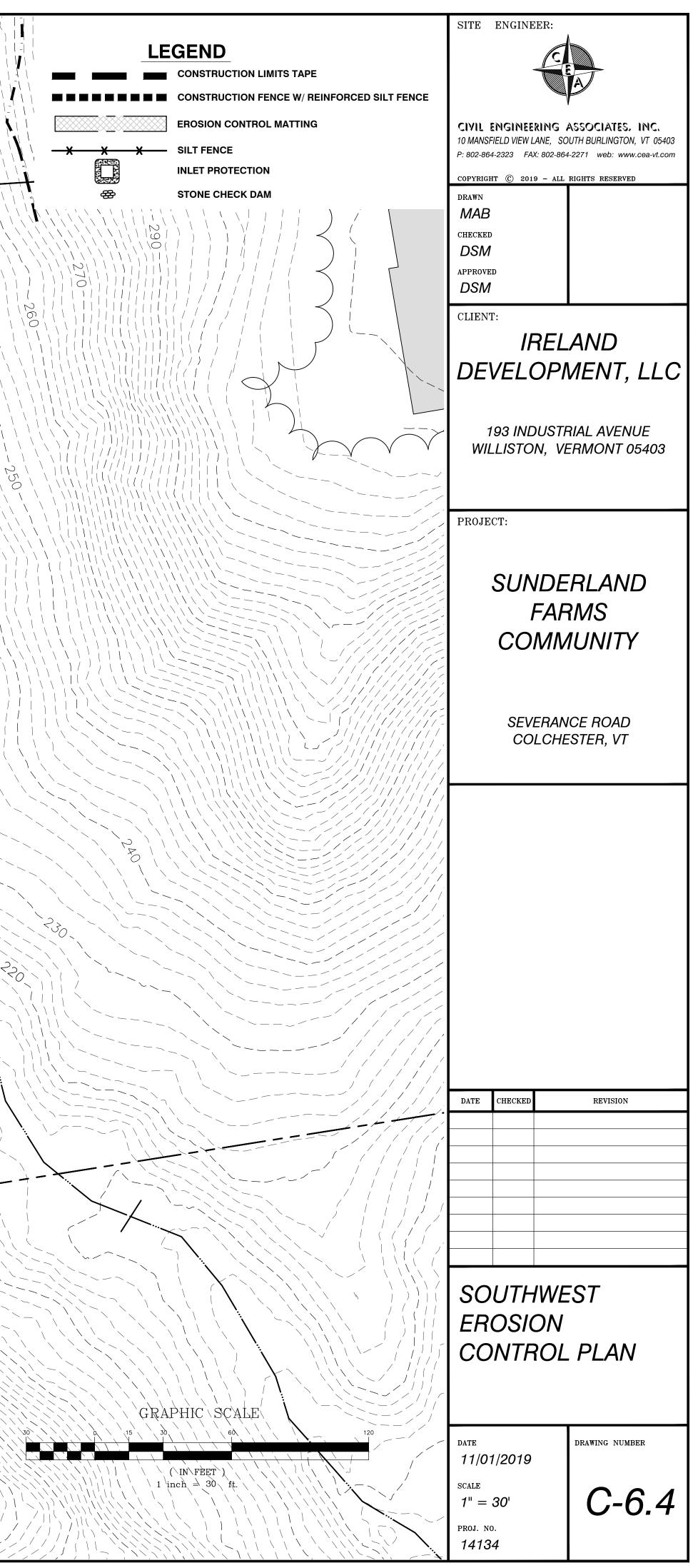

		SITE	ENGINE	EER:	
				C	
	292				ASSOCIATES, INC. UTH BURLINGTON, VT 05403
		P: 802-8			-2271 web: www.cea-vt.com
	POND ACCESS ROAD			9 – ALL	RIGHTS RESERVED
	OVERFLOW AT ELEV. 276.0				
	1 270	снескі 6 DSA			
	3 1 272	APPROV			
	268				
24"_HDPE		CLIEN	NT:		
	260	0	IF	REL	AND
	DEPENDING ON SOIL CONDITIONS, ANTI-SEEP COLLARS MAY BE REQUIRED 256	6 DE	EVEL (OPI	MENT, LLC
	ALONG POND OUTLET LINES. CONTACT ENGINEER PRIOR TO 252 POND CONSTRUCTION	2	193 INE	DUSTF	RIAL AVENUE
	248	8- W	ILLISTO	N, VE	ERMONT 05403
	244	4			
	240				
	236		ECT:		
	232				
	228				RLAND
	224				RMS
	220	_	CO	MN	IUNITY
	216	_			
	212	2			CE ROAD STER, VT
	267.3	264.5			
	2	~			
		2+			
		_			
		_			
	292	2			
	288	8			
	28-	4			
	28	0			
	27	<u>′6</u>			
	27:	2			
	268	8	_		
	264	4 DATE	CHECKED		REVISION
	260	0			
)E	250				
< <u>~</u>	252				
	<u>3</u> 1				
INV.=247.0	240				N POND
			CTIC		
	EXISTING GRADE	_			,
	224	_			
	220				
	210	6 DATE			DRAWING NUMBER
	212		01/2019		ZING NUMBER
0	0	SCALE 1 " –	= 10'		C5.4
235.0	228.0	$I^{*} =$ PROJ.			00.4
	6+00	141			

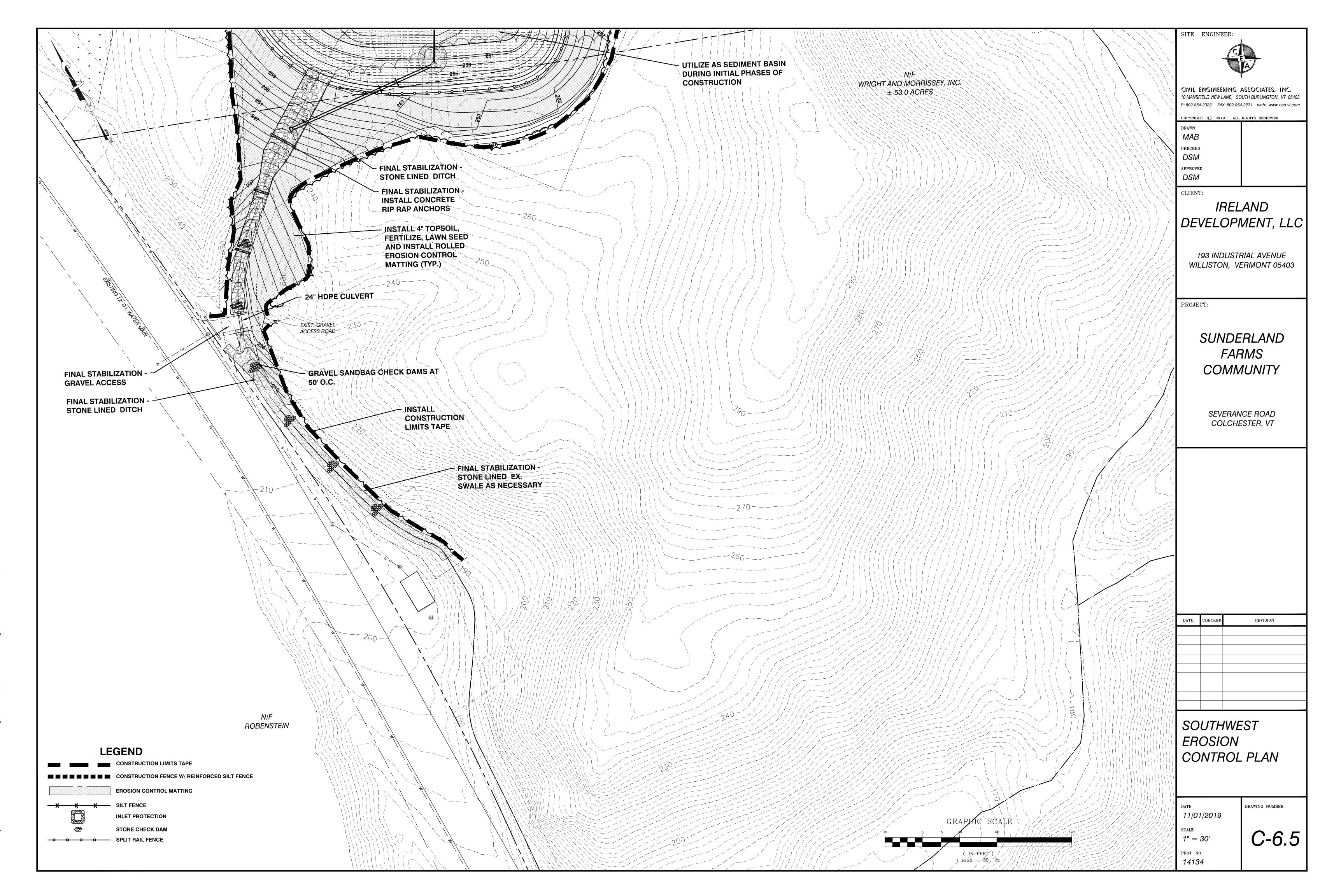


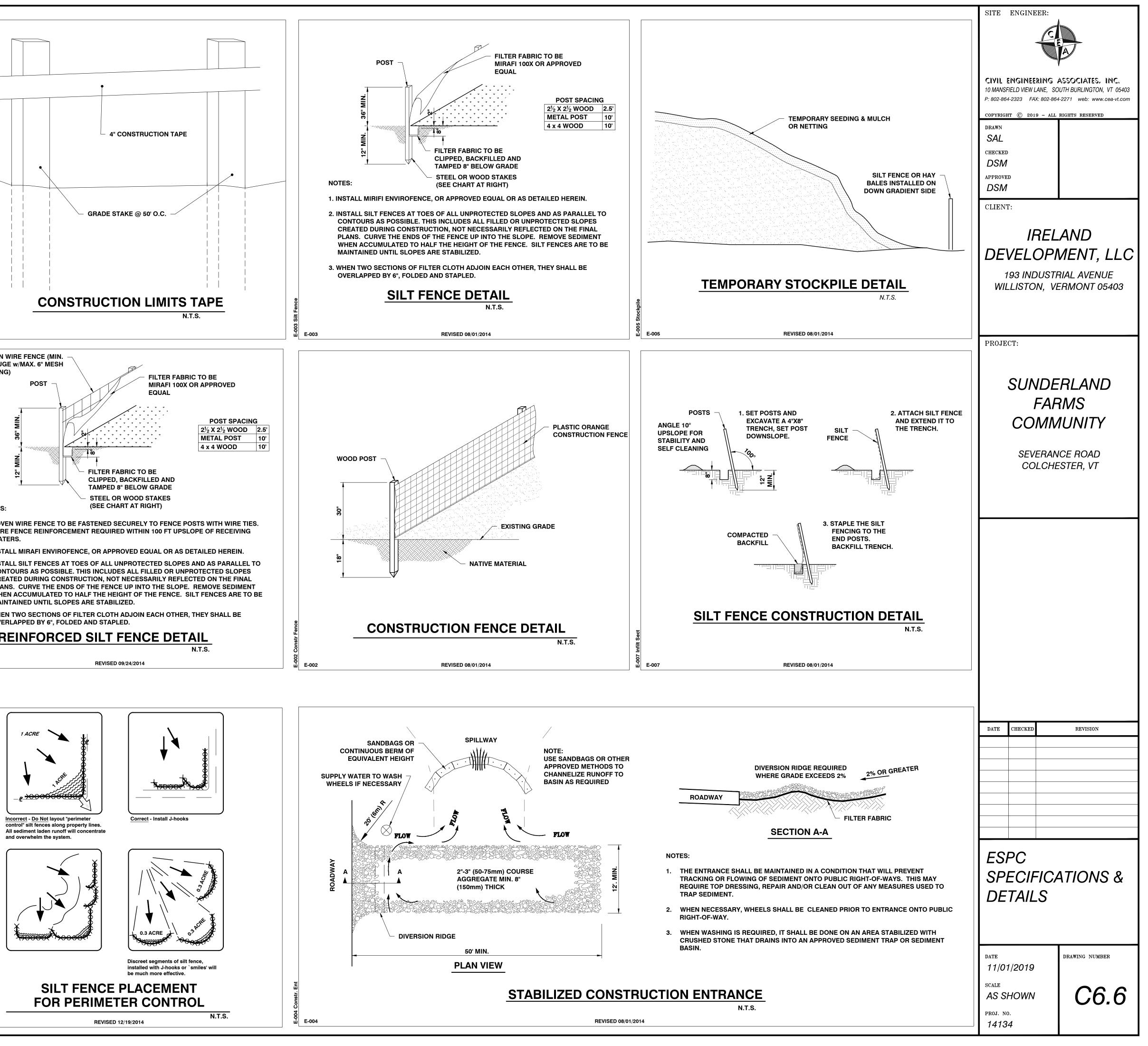

			1
DEWALK RAMP WALK-STRAIGHT H TD PARALLEL	GENERAL NOTES: 1. THE DIMENSIONS AND GRADES SHOWN ON THIS STANDARD WILL BE ADHERED TO IN THE DESIGN AND THE CONSTRUCTION OF SIDEWALK RAMPS . WHERE SIDEWALKS RUN ADJACENT TO ROADWAYS ON STEEP (5% OR GREATER) GRADES, RAMP GRADES WILL BE AS FLAT AS POSSIBLE.	SITE ENGINEER:	
6" MIN. 8" MAX. B" MAX. SURFACE 5.0% MAX. ADJACENT TO RAMP DETECTABLE WARNING	 (5% DR GREATER) GRADES, RAMP GRADES WILL BE AS FLAT AS PDSSIBLE. (DN LOW SIDE OF DRIVES AND INTERSECTING SIDE STREETS, RAMPS SHALL SLOPE TOWARDS DRIVE DR SIDE STREET @ 2%) 2. NDMINAL RAMP DIMENSIONS: RAMP WIDTH - 5'-0' MINIMUM RAMP SLOPE - 8.3% MAXIMUM FLARE SLOPE - 10% MAXIMUM RAMP CRDSS SLOPE - 2.0% MAXIMUM 3. A LEVEL LANDING (ND GREATER THAN 2.0% SLOPE IN ANY DIRECTION) SHALL BE PROVIDED AT THE TOP OF SIDEWALK RAMPS TO ALLOW FOR STOPPING AND MANEUVERING OF WHEELCHAIRS. 4. LEVEL LANDINGS AT THE BOTTOM OF PERPENDICULAR RAMPS SHALL BE WHOLLY CONTAINED WITHIN MARKED CRDSSWALKS. 5. DUMMY JOINTS SHALL BE PROVIDED AT TRANSITIONS (GRADE CHANGES) AT TOPS AND BOTTOMS OF RAMPS AND FLARES. 6. VERTICAL DROP-OFF EDGES TO RAMPS WILL NOT BE BUILT UNLESS THE RAMP ABUTS AN AREA WHICH WILL NOT BE BUILT UNLESS THE RAMP ABUTS AN AREA WHICH WILL NOT BE PROVIDED WHERE THE RAMP ADJOINS THE ROADWAY. 8. AT MARKED CROSSWALKS, THE FULL WIDTH OF THE RAMP OR LANDING SHALL BE CONTAINED WITHIN THE PAVEMENT MARKINGS. 9. WHERE POSSIBLE, RAMP FLARES SHOULD BE LOCATED DUTSIDE THE DIRECT LINE OF TRAVEL MOST LIKELY TO BE FOLLOWED BY THE VISUALLY IMPAIRED. 10. SIGNS, POLES, PLANTERS, MAILBOXES, ETC. SHALL NOT BE LOCATED WHERE THEY WILL INTERFERE WITH THE USE OF SIDEWALK RAMPS. 11. WHERE PDSSIBLE, SIDEWALK RAMPS SHOULD NOT BE LOCATED 11. WHERE PDSSIBLE, SIDEWALK RAMPS SHOULD NOT BE LOCATED 	DEVELOPI 193 INDUST	DUTH BURLINGTON, VT 05403 4-2271 web: www.cea-vt.com
SIDEWALK RAMP PERPENDICULAR RAMP IN URBAN SETTING - WIDE SIDEWALK	 11. WHERE FEASIBLE, SIDE WHERE RAMES STADUED NOT DE EDORTED WHERE USERS MUST CROSS DROP INLET GRATES, MANHOLE COVERS OR OTHER ACCESS LIDS. IF THIS CANNOT BE AVOIDED THEN GRATE DESIGN AND PLACEMENT SHALL CONFORM TO ADA REQUIREMENTS. 12. CURB DRAINAGE SHOULD BE CONSTRUCTED SO AS TO PRECLUDE THE FLOW OF WATER PAST THE SIDEWALK RAMP. 13. WHEREVER FEASIBLE, TWO SIDEWALK PAMPS ARE RECOMMENDED IN PREFERENCE TO A SINGLE RAMP. 14. JOINTS WILL BE CONSTRUCTED IN ACCORDANCE WITH CURRENT SIDEWALK SPECIFICATIONS, HOWEVER EXPANSION JOINTS WITHIN THE SIDEWALK RAMP AREA WILL BE AVOIDED WHEREVER POSSIBLE. 15. SIDEWALKS THAT ARE LESS THAN 5' WIDE REQUIRE 5' WIDE BY 5' LONG 	FAF COMN SEVERAN	RLAND RMS IUNITY ICE ROAD ESTER, VT
ANSITIEN	 PASSING AREAS (ND GREATER THAN 2.0% CRDSS SLDPE) AT INTERVALS NOT TO EXCEED 200 FEET. 16. E.D.P. = EDGE DF PAVEMENT 17. THE PUBLIC SIDEWALK CURB RAMP STANDARDS DEPICTED HERE MAY NOT BE APPROPRIATE FOR ALL LOCATIONS. FIELD CONDITIONS AT INDIVIDUAL LOCATIONS MAY REQUIRE SPECIFIC DESIGNS. DESIGNS MUST BE CONSISTENT WITH THE PROVISIONS OF THIS SHEET TO THE MAXIMUM EXTENT FEASIBLE ON ALTERATION PROJECTS AND WHEN STRUCTURALLY PRACTICABLE ON NEW CONSTRUCTION PROJECTS AS REQUIRED BY THE AMERICANS WITH DISABILITIES ACT ACCESSIBILITY GUIDELINES. 		
		DATE CHECKED	REVISION
IRECTION OF TRAVEL LEL ALIGNMENT	DETECTABLE WARNING NOTES: 1. DETECTABLE WARNING SURFACES SHALL BE PAID FOR AS SPECIFIED IN THE CONTRACT. 2. CONCRETE ADJACENT TO ALL DETECTABLE WARNINGS SHALL HAVE A BROOM FINISH. 3. THE COLOR OF THE DETECTABLE WARNING SHALL PROVIDE A VISUAL CONTRAST TO THE SURROUNDING SURFACE AND SHALL BE AS SPECIFIED IN THE DOCUMENTS. 4. TRUNCATED DOMES SHALL BE ALIGNED ON A SQUARE GRID IN THE PREDOMINANT DIRECTION OF PEDESTRIAN TRAVEL. 5. SIDEWALK RAMP SHALL BE CONSTRUCTED WITH 'TRUNCATED DOMES' IN ACCORDANCE WITH ADA ACCESSIBILITY GUIDELINES. DETECTABLE WARNINGS SURFACE SHALL BE CONSTRUCTED OF CAST IRON. EAST JORDAN IRON WORKS	ROADWAY SITE DET	
1.6" MIN. 2.4" MAX. 0.65" MIN. BASE TO BASE SPACING	7005 SERIES DETECTABLE WARNING PLATES OR EQUIVALENT. 6. SEE THE TOWN OF COLCHESTER FOR A LIST OF ACCEPTABLE DETECTABLE WARNINGS MANUFACTURERS FOR ANY WARNINGS TO BE INSTALLED WITHIN THE PUBLIC RIGHT-OF-WAY.	date 11/01/2019 scale AS SHOWN	drawing number C5.6
	.T.S.	proj. no. 14134	

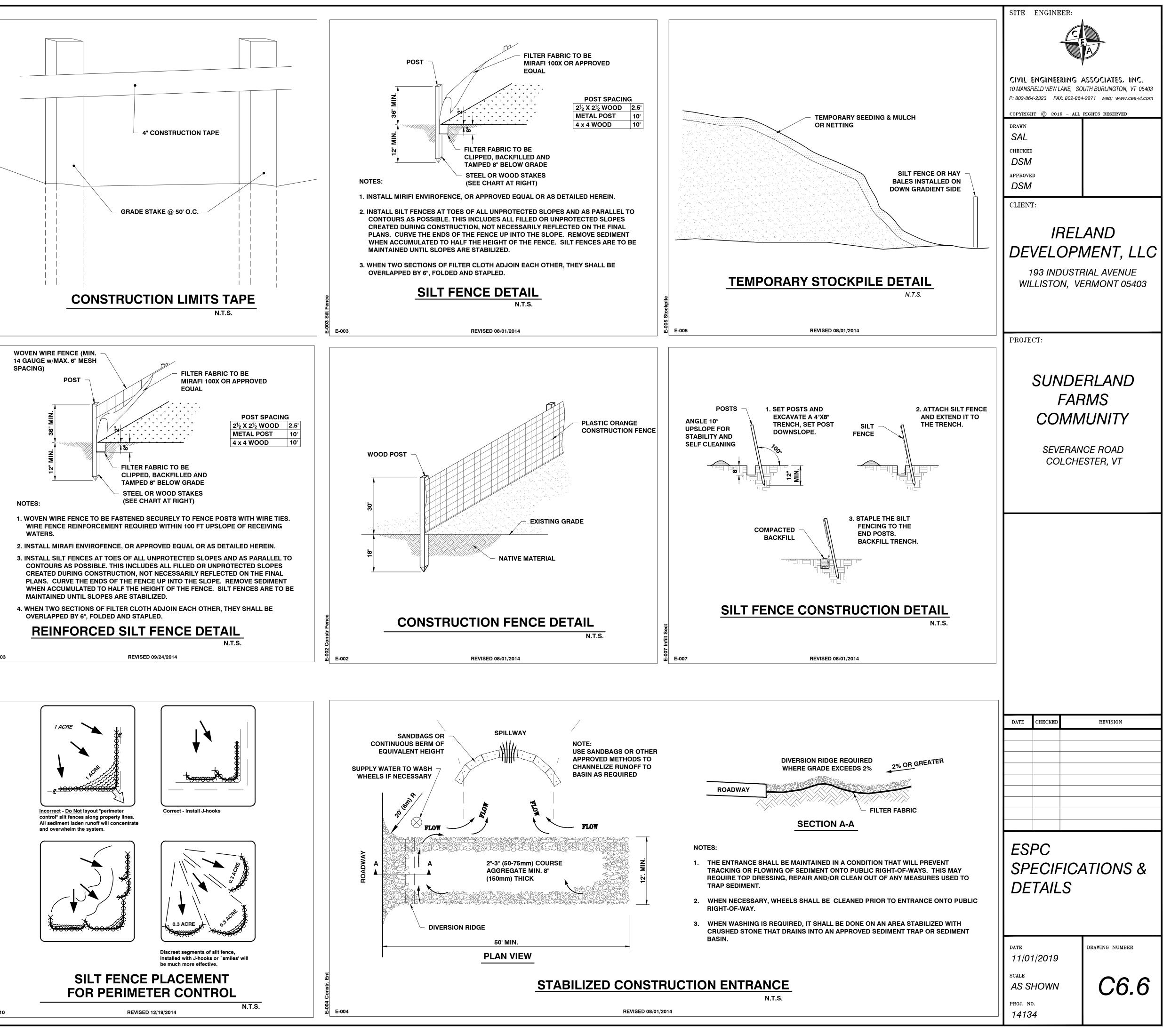


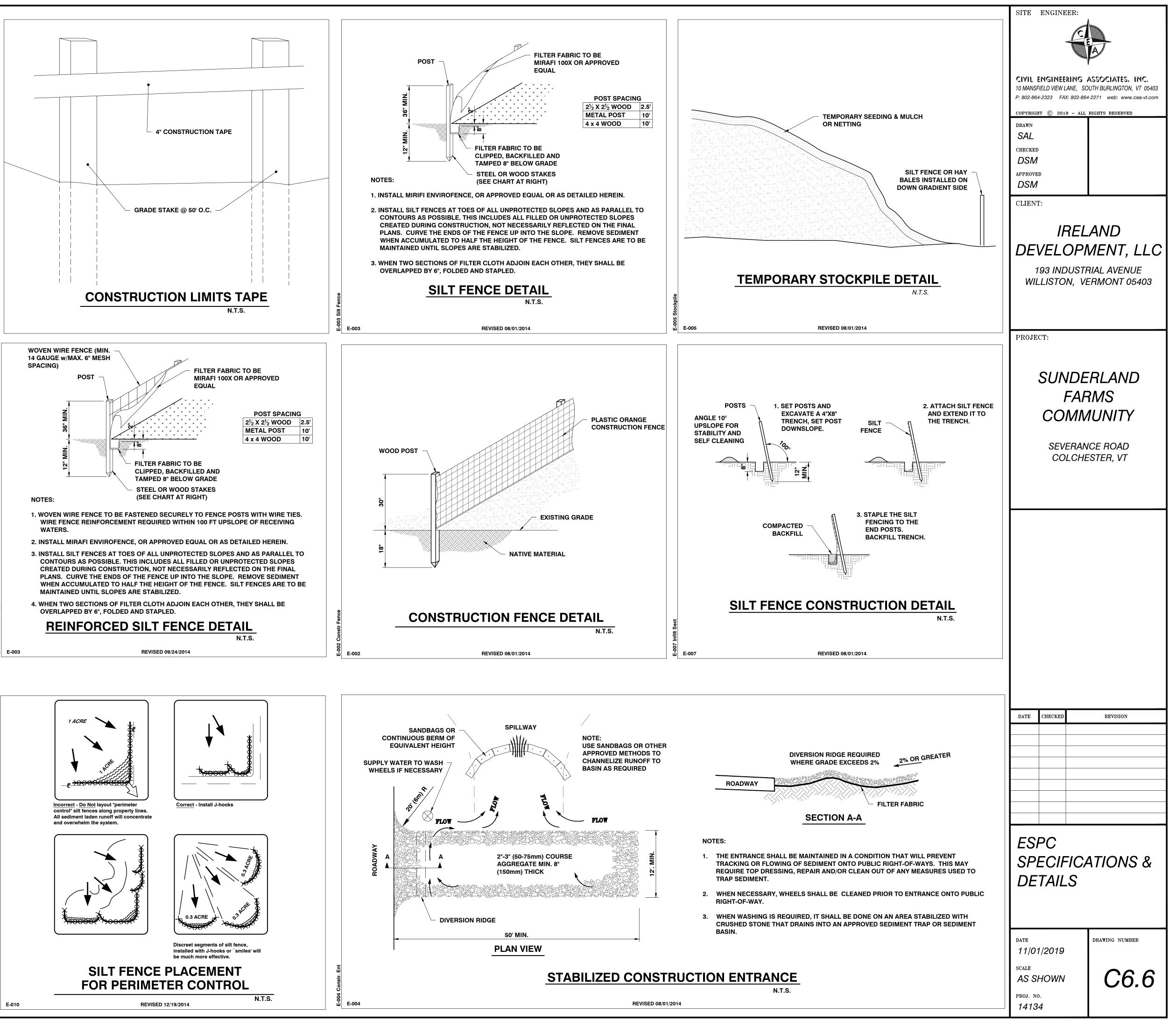


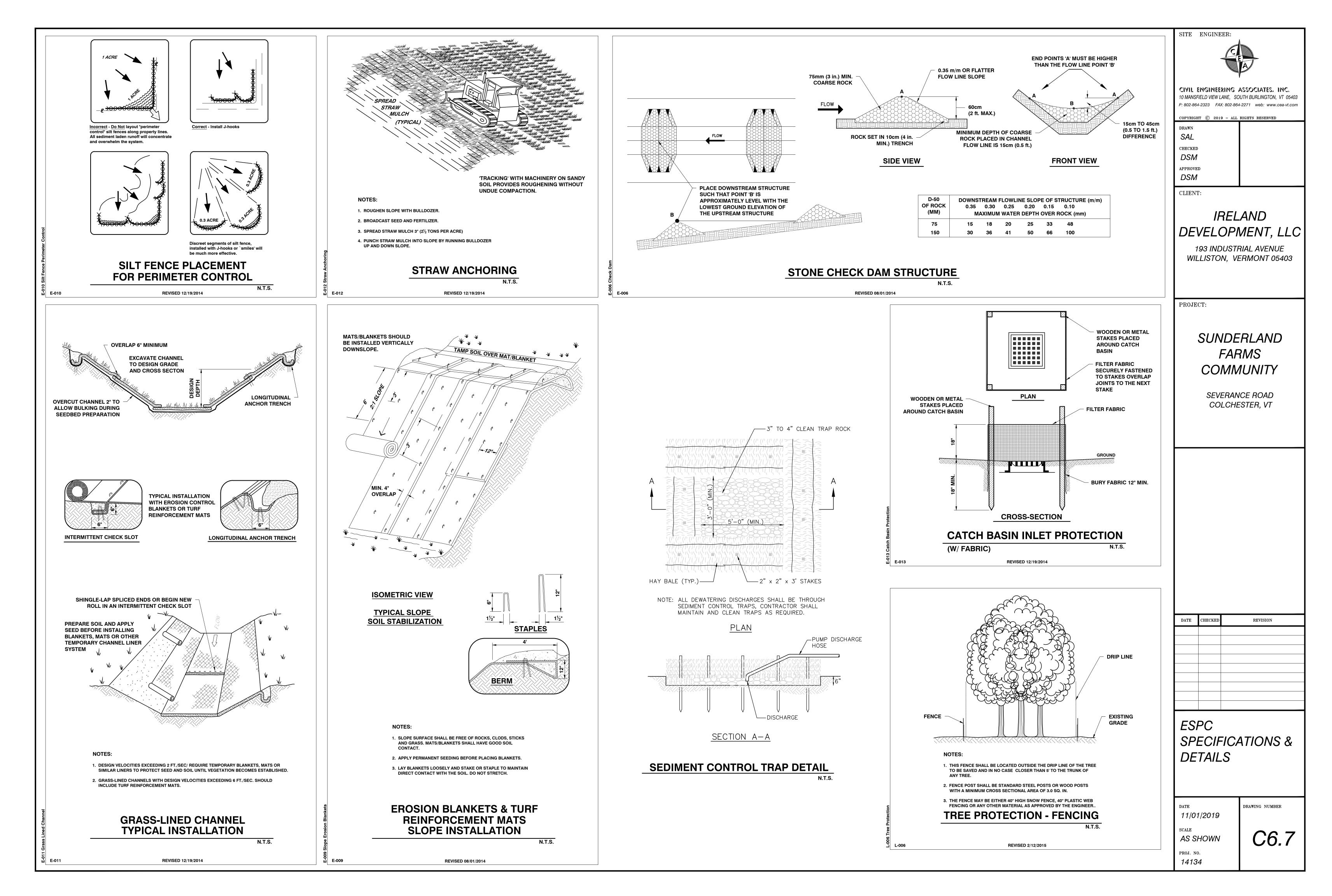

				SITE ENGINEEI	R:
					C
-316 -316	, 31B				
147 - 1		~ ~ - 316 - ~ ~	((J ₃₂₂) J ³²⁰		NG ASSOCIATES, INC.
					E, SOUTH BURLINGTON, VT 05403 02-864-2271 web: www.cea-vt.com
				COPYRIGHT © 2019 -	- ALL RIGHTS RESERVED
				drawn MAB	
-310			- C	CHECKED	
				DSM Approved	
			Lics carb	DSM	
				CLIENT:	
				IRI	ELAND
				DEVELO	PMENT, LLC
280					,
		280	/	193 INDU	STRIAL AVENUE
		360	—.		VERMONT 05403
		` '		L	
				PROJECT:	
	067				
				SUNL	DERLAND
Ha Litt				F,	ARMS
				CON	1MUNITY
			· · · · · · · · · · · · · · · · · · ·	-	
	500/1			SEVER	RANCE ROAD
		2 2 2 2 0 1 2 0 1 2 0 0		COLO	CHESTER, VT
				-	
A CONTRACT			240 /		
J Y					
	260	501			
		230			
		KL J J Z			
PHASE					
ROADS NAME PEGS COVE		<u>N L.F.</u> RIVE 265 L.F. ± (NOT IN			
STEWARD AV	ENUE CLASS B CLASS B	702 L.F. ± 458 L.F. ±			
TOTAL L.F. =		1,160 L.F.±	SED)	DATE CHECKED	REVISION
PHASE	2 2021-2022				
	CLASSIFICATIO				
	CLASS C CLASS B	0 L.F. ± 1,160 L.F. ±			
 STEWART AV DYLAN AVEN TOTAL L.F. = 	UE CLASS B	443 L.F. ± <u>370 L.F. ±</u> 1,973 L.F.±			
	BLE CLASS C ROAD =		OSED)		
	3 2022-2023				
		N L.F.			L EROSION
/	CLASS C CLASS B	0 L.F. ± 1,973 L.F. ±			
SHEA DRIVE DYLAN AVEN	CLASS C UE CLASS C	515 L.F. ± 824 L.F. ±			
TOTAL L.F. = 50% ALLOWA	BLE CLASS C ROAD =	3,312 L.F.± 1,656 L.F. (1,339 L.F. Pl	ROPOSED)	PHASIN	G PLAIN
	2 AND 3 MAYBE ACCEI		NS SO ENABLE.		
-230) GF	APHIC ² SCALE		L	
1 280 80		80 160	320		DRAWING NUMBER
		(IN FEET)		07/01/2019	
	So to	1 inch = 80 ft.		1'' = 80'	C-6.0A
		λ	_	PROJ. NO.	
		\ 		14134	











E-003

- WATERS.
- NOTES:

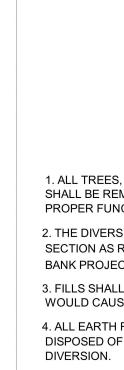
Winter EPSC Requirements

Introduction - Rains in late fall, thaws throughout the winter, and spring melt and rains can produce significant flows over frozen and saturated ground, greatly increasing the potential for erosion. At the same time as the erosion risk increases, the "toolbox" available to the contractor and on-site plan coordinator shrinks significantly over this period (Table 3.4 below).

Table 3.4 Effects of Winter on EPSC Practices		
EPSC Measure	Effect of Winter Conditions	
Vegetative Ground Cover	Cannot be established outside of growing	
Hydroseeding	Stabilizers are poor in cold conditions, poor/no growth of seed over	
Diversion Structures	Difficult or impossible to implement in frozen soils.	
Sedimentation Basins	Must be installed pre-ground freezing. Can be overwhelmed by spring flows	
Silt Fence	Difficult to install in frozen ground. Often fail during spring melt.	
Erosion Blankets	Cannot be installed correctly on frozen ground. Improper installations (not keyed in) melt flows. wash away in melt flows.	
Grassed line swales	Installation following ground freezing difficult, leaving unprotected concentrated flows with significant erosion potential	
Impervious Stabilization	Paving, other measures cannot be completed in winter	

In particular, establishing vigorous vegetation during winter construction is not possible. Based upon the activities anticipated to be undertaken during this period, the Contractor shall plan and implement the following Winter EPSC measures.

EPSC Plan Requirements for -Winter Shutdown-


For those projects that will complete earth disturbance activities prior to the winter period (October 15), the following must be implemented by the Site Contractor in coordination with the On-Site Plan Coordinator:

- 1. For areas to be stabilized by vegetation, all seeding shall be completed no later than September 15 to ensure adequate growth and cover.
- 2. Non-vegetative stabilization of all areas of disturbed soils without existing vegetation shall be completed no later than October 15.
- 3. When mulch is used as a temporary means of stabilization, the rate of application shall be double that of the regular construction season rate, or roughly 2 inches of mulch with 80-90% cover. Mulch should be tracked in when weather permits or stabilized with netting or an approved tackifier.

EPSC Plan Requirements for -Winter Construction-

If construction activities involving earth disturbance continue past October 15 or begin before April 15, the following must be implemented by the Owner/Site Contractor:

- 1. Enlarged stabilized access points to provide for snow stockpiling.
- 2. Limits of disturbance flagging moved or replaced to reflect the boundaries of winter work.
- A snow management plan which implements the following requirements:
 a. adequate storage and control of snowmelt by diverting these flows around the work
- area, b. cleared snow is to be stored down gradient of all areas of disturbance
- c. Storage of snow in stormwater treatment structures is prohibited.
- d. All drainage structures shall be kept open and free of snow/ice.
- e. buffer is to be maintained from the perimeter controls such as silt fence to allow for snow clearing and maintenance.
- f. Install silt fence a minimum of 25 feet down gradient of areas of disturbance and snow storage areas. Reinforce fence in areas where snow load forces may be an issue due to site constrictions.
- 4. In areas of disturbance within 100 feet of a receiving water, silt fence shall be reinforced or else replaced with perimeter dikes, swales, or other practices resistant to the forces of snow loads.
- All silt fence and other practices requiring earth disturbance shall be installed ahead of ground freezing.
- 6. Where mulch is the selected stabilization measure, the mulch shall be installed at double the standard rate of mulch, or roughly 2 inches of mulch with 80-90% cover.
- 7. Mulch should be tracked in when weather permits or stabilized with netting or an approved tackifier to prevent removal by wind.
- 8. To ensure cover of disturbed soil in advance of a melt event, areas of disturbed soil must be stabilized at the end of each work day, with the following exceptions:
- a. If no precipitation within 24 hours is forecast and work will resume in the same disturbed area within 24 hours, daily stabilization is not necessary.
- b. Disturbed areas that collect and retain runoff, such as house foundations or open utility trenches."
- 9. Directions to remove snow or ice to less than 1" thickness prior to temporary or permanent stabilization.
- 10. Stone stabilization shall be installed a width of 10 to 20ft wide around the perimeter of buildings under construction, where construction vehicle traffic is anticipated.

5. STABILIZATIO AND SPECIFIC A. FOR DESIG MULCHING IT IS RECOM DIVERSION ENTERING

B. FOR DESIG SHALL BE S MATTING C DIVERSION

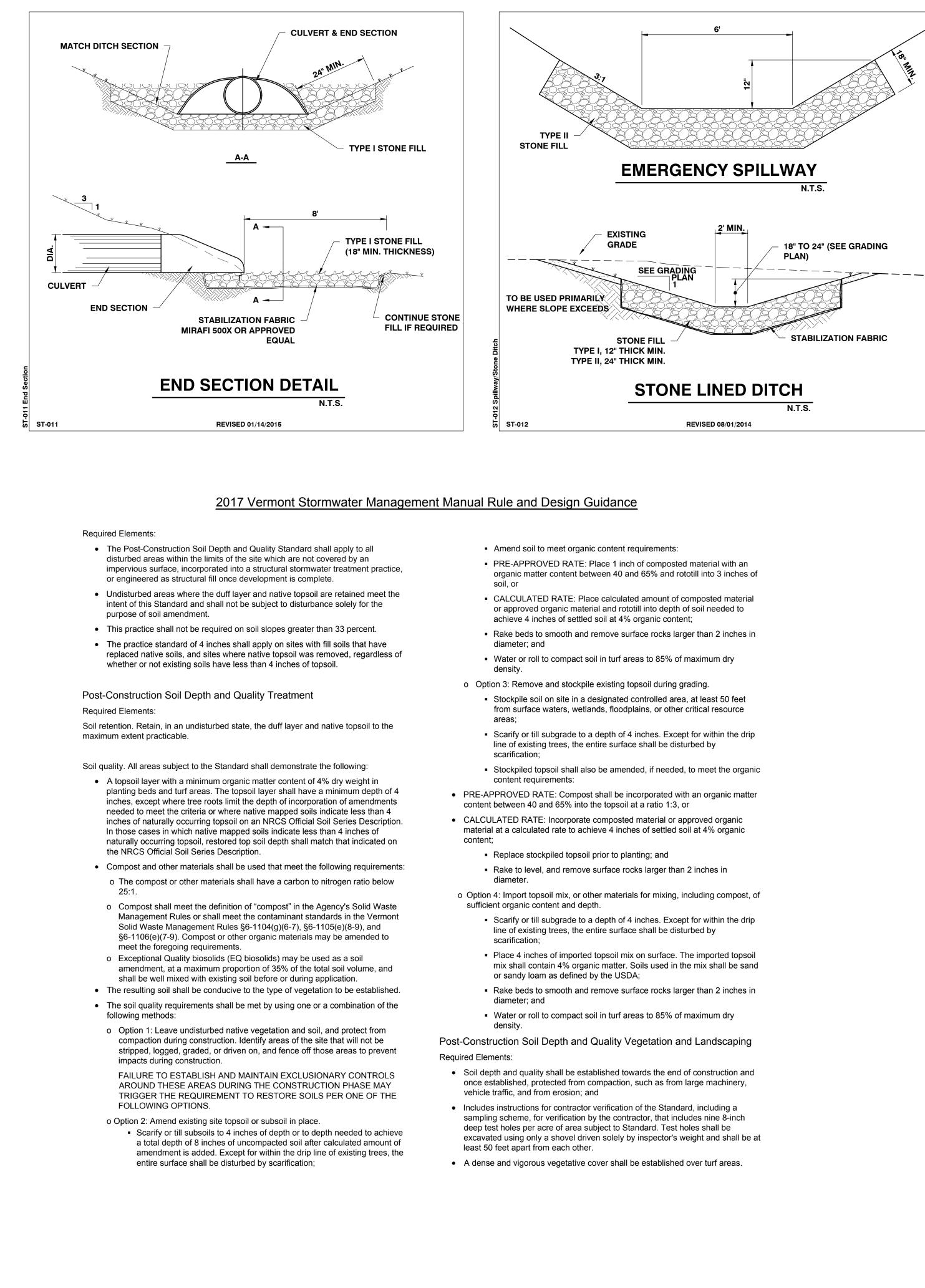

VERMO

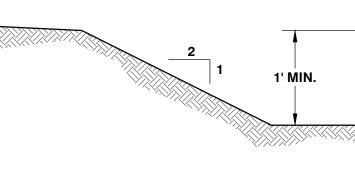
Figure 4.14 Dive

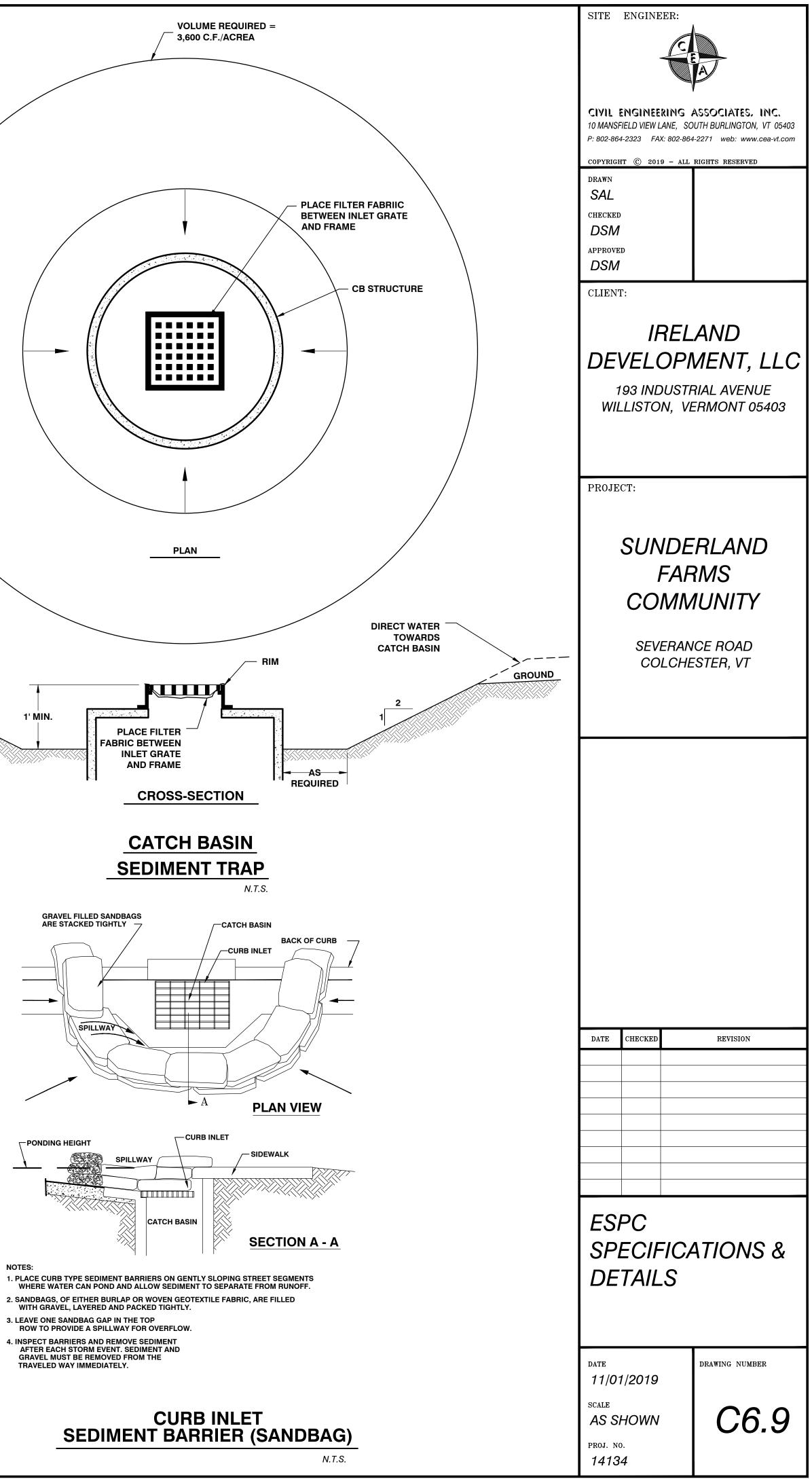
Ver Page 4.66

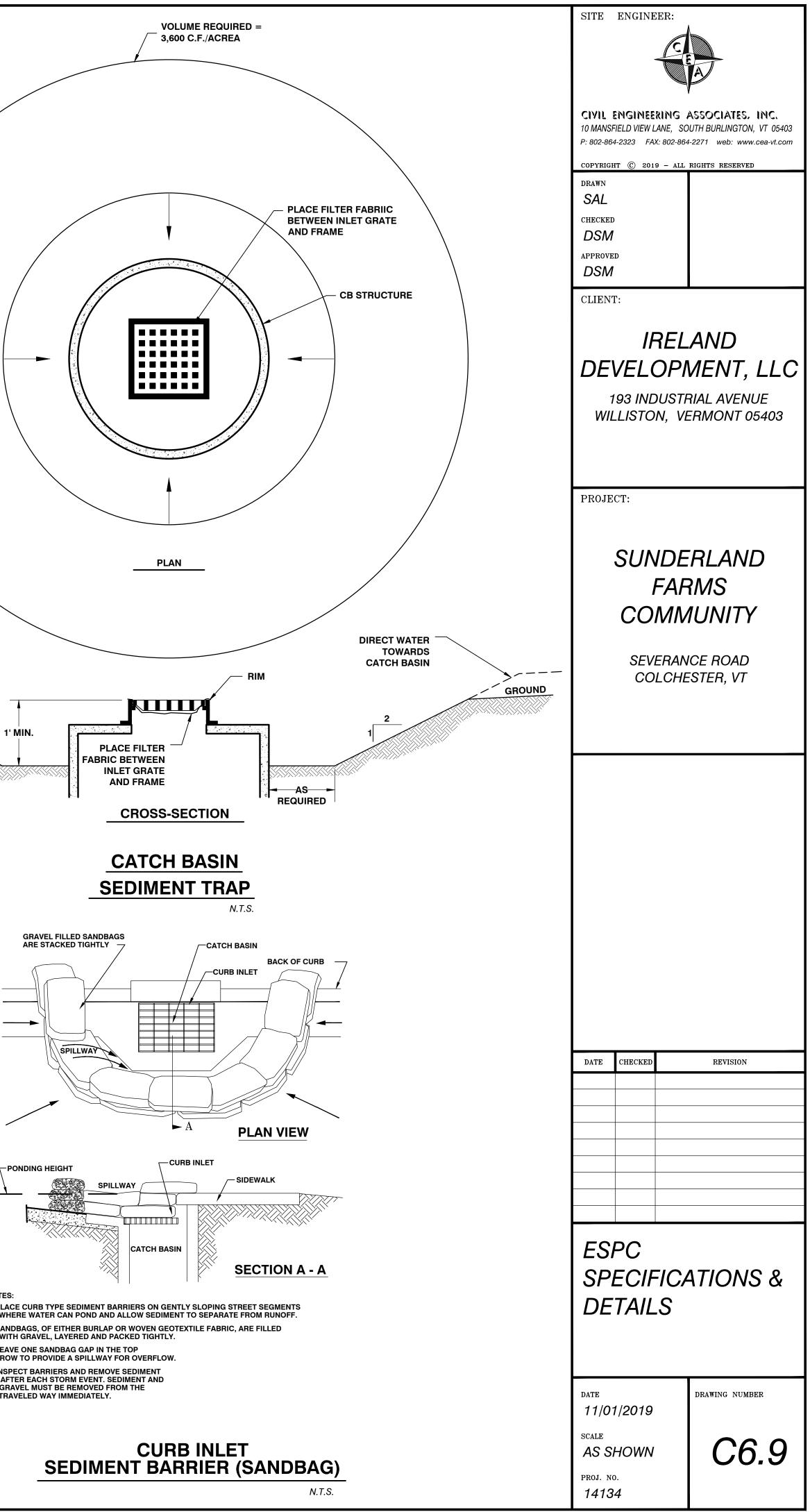
	SYMBOL
	D
D 1 Z b Z 4'MIN. WIDTH	
TRAPEZOIDAL CROSS-SECTION	
D D/4 T/2 T D D/4 T T D D/4 T T D D/4 T/2 T D D/4 T/2 T D D/4 T D D/4 T/2 T D D/4 T D D/4 T D/4 T D D/4 T D D/4 D/4 D D/4 D D/4 D D/4 D/4 D D/4 D/4	
CONSTRUCTION SPECIFICATIONS	
, BRUSH, STUMPS, OBSTRUCTIONS, AND OTHER OBJECTIONABLE MATERIAL MOVED AND DISPOSED OF SO AS NOT TO INTERFERE WITH THE CTIONING OF THE DIVERSION.	
SION SHALL BE EXCAVATED OR SHAPED TO LINE, GRADE, AND CROSS REQUIRED TO MEET THE CRITERIA SPECIFIED HEREIN, AND BE FREE OF CTIONS OR OTHER IRREGULARITIES WHICH WILL IMPEDE NORMAL FLOW.	
L BE COMPACTED AS NEEDED TO PREVENT UNEQUAL SETTLEMENT THAT SE DAMAGE IN THE COMPLETE DIVERSION.	
REMOVED AND NOT NEEDED IN CONSTRUCTION SHALL BE SPREAD OR SO THAT IT WILL NOT INTERFERE WITH THE FUNCTIONING OF THE	
ON SHALL BE DONE ACCORDING TO THE APPROPRIATE STANDARD CATIONS FOR VEGETATIVE STABILIZATION.	
GN VELOCITIES OF LESS THAN 3.5 FT. PER. SEC., SEEDING AND MAY BE USED FOR THE ESTABLISHMENT OF THE VEGETATION. MMENDED THAT, WHEN CONDITIONS PERMIT, TEMPORARY IS OR OTHER MEANS SHOULD BE USED TO PREVENT WATER FROM THE DIVERSION DURING THE ESTABLISHMENT OF THE VEGETATION.	
GN VELOCITIES OF MORE THAN 3.5 FT. PER. SEC., THE DIVERSION STABILIZED WITH SOD, WITH SEEDING PROTECTED BY JUTE OR DR WITH SEEDING AND MULCHING INCLUDING TEMPORARY I OF THE WATER UNTIL THE VEGETATION IS ESTABLISHED.	
TED FROM DETAILS PROVIDED BY: NEW YORK STATE DEC ORIGINALLY DEVELOPED BY USDA-NRCS NONT DEPARTMENT OF ENVIRONMENTAL CONSERVATION	VERSION
ersion	
rmont Standards and Specifications For Erosion Prevention & Sediment Co	ontrol

SITE ENGINEER:			
	E		
	ASSOCIATES, INC. OUTH BURLINGTON, VT 05403 64-2271 web: www.cea-vt.com		
COPYRIGHT © 2019 – ALL DRAWN	RIGHTS RESERVED		
SAL			
checked DSM			
APPROVED DSM			
CLIENT:			
DEVELOP 193 INDUST	LAND MENT, LLC RIAL AVENUE ERMONT 05403		
PROJECT:			
ירואו וא	RLAND		
	RMS		
	IUNITY		
	NCE ROAD ESTER, VT		
DATE CHECKED	REVISION		
ESPC			
SPECIFICATIONS &			
DETAILS			
DATE	DRAWING NUMBER		
11/01/2019			
SCALE AS SHOWN	C6.8		
proj. no. 14134			

CONSTRUCTION NOTES:


1. SEDIMENT SHALL BE REMOVED AND THE TRAP RESTORED TO ITS ORIGINAL DIMENSIONS WHEN THE SEDIMENT HAS ACCUMULATED TO 1/2 THE DESIGN DEPTH OF THE TRAP. REMOVED SEDIMENT SHALL **BE DEPOSITED IN A SUITABLE AREA AND** STABILIZED.


2. THE VOLUME OF SEDIMENT STORAGE SHALL BE 3600 CUBIC FEET PER ACRE OF CONTRIBUTORY DRAINAGE.


3. THE STRUCTURE SHALL BE INSPECTED AFTER EACH RAIN AND REPAIRS MADE AS NEEDED.

4. THE SEDIMENT TRAP SHALL BE REMOVED AND THE AREA STABILIZED WHEN THE CONSTRUCTED DRAINAGE AREA HAS BEEN PROPERLY STABILIZED.

5. ALL CUT SLOPES SHALL BE 1:1 OR FLATTER.

STANDARD AND SPECIFICATIONS FOR SEDIMENT TRAP

Definition

A temporary sediment control device formed by excavation and/or embankment to intercept sediment laden runoff and retain the sediment.

<u>Purpose</u>

The purpose of the structure is to intercept sedimentladen runoff and trap the sediment in order to protect drainage ways, properties, and rights-of-way below the sediment trap from sedimentation.

Conditions Where Practice Applies

A sediment trap is usually installed in a drainage way, at a storm drain inlet, or other points of collection from a disturbed area.

Sediment traps should be used to artificially break up the natural drainage area into smaller sections where a larger device (sediment basin) would be less effective.

<u>Design Criteria</u>

If any of the design criteria presented here cannot be met, see Standard and Specification for Sediment Basin.

Drainage Area

The drainage area for sediment traps shall be in accordance with the specific type of sediment trap used (Type I through V).

Location

Sediment traps shall be located so that they can be installed prior to grading or filling in the drainage area they are to protect. Traps must not be located any closer than 20 feet from a proposed building foundation if the trap is to function during building construction. Locate traps to obtain maximum storage benefit from the terrain and for ease of cleanout and disposal of the trapped sediment.

Trap Size

The volume of a sediment trap as measured at the

elevation of the crest of the outlet shall be at least 3,600 cubic feet per acre of drainage area. The volume of a constructed trap shall be calculated using standard mathematical procedures. The volume of a natural sediment trap may be approximated by the equation: Volume (cu.ft.) = 0.4 x surface area (sq.ft.) x maximum depth (ft.).

Trap Cleanout

Sediment shall be removed and the trap restored to the original dimensions when the sediment has accumulated to $\frac{1}{2}$ of the design depth of the trap. Sediment removed from the trap shall be deposited in a protected area and in such a manner that it will not erode.

Embankment

All embankments for sediment traps shall not exceed five (5) feet in height as measured at the low point of the original ground along the centerline of the embankment. Embankments shall have a minimum four (4) foot wide top and side slopes of 2:1 or flatter. The embankment shall be compacted by traversing with equipment while it is being constructed. The embankment shall be stabilized with seed and mulch as soon as it is completed.

The elevation of the top of any dike directing water to any sediment trap will equal or exceed the maximum height of the outlet structure along the entire length of the trap.

Excavation

All excavation operations shall be carried out in such a manner that erosion and water pollution shall be minimal. Excavated portions of sediment traps shall have 1:1 or flatter slopes.

Outlet

The outlet shall be designed, constructed, and maintained in such a manner that sediment does not leave the trap and that erosion at or below the outlet does not occur.

Vermont Standards and Specifications For Erosion Prevention & Sediment Control -2006-

Page 5.21

STANDARD AND SPECIFICATIONS FOR **SEDIMENT TRAP**

<u>R</u>	<u>Riprap Outlet Sediment Trap ST-V</u> (for Stone Lined Channel)			
Contributing	Depth of	Length of		
Drainage Area	Channel (a)	Weir (b)		
(ac.)	(ft.)	(ft.)		
1	1.5	4.0		
2	1.5	5.0		
3	1.5	6.0		
4	1.5	10.0		
5	1.5	12.0		
6	1.5	14.0		
7	1.5	16.0		
8	2.0	10.0		
9	2.0	10.0		
10	2.0	12.0		
11	2.0	14.0		
12	2.0	14.0		
13	2.0	16.0		
14	2.0	16.0		
15	2.0	18.0		

Considerations

Select locations for sediment traps during site evaluation. Note natural drainage divides and select trap sites so that runoff from potential sedimentproducing areas can easily be diverted into the traps. Make traps readily accessible for periodic sediment removal and other necessary maintenance. Plan locations for sediment disposal as part of trap site selection. Clearly designate all disposal areas on the plans.

Sediment trapping is achieved primarily by settling within a permanent pool formed by excavation, or by a combination of excavation and embankment. Sediment-trapping efficiency is a function of surface area and inflow rate. Installations that provide pools with large length to width ratios reduce shortcircuiting and allow more of the pool surface area for settling. This optimizes efficiency.

The minimum length of flow through the trap should be 10 feet and the minimum length to width ratio should be 2:1. If site conditions permit a greater travel distance through the basin and greater length to width ratio the water quality benefit provided by the sediment trap will be enhanced. The average trap permanent pool depth should be a minimum of 3 feet to prevent resuspension of sediments.

Because well-planned sediment traps are key measures to preventing off-site sedimentation, they should be installed in the first stages of project development.

Plans and Specifications

Plans and specifications for installing sediment traps shall be in keeping with this standard and shall describe the requirements for applying the practice to achieve its intended purpose.

Each trap shall be delineated on the plans in such a manner that it will not be confused with any other features. Each trap on a plan shall indicate all the information necessary to properly construct and maintain the structure. If the drawings are such that this information cannot be delineated on the drawings, then a table shall be developed. If a table is developed, then each trap on a plan shall have a number and the numbers shall be consecutive.

The following information shall be shown for each trap in a summary table format on the plans.

- 1. Trap number
- 2. Type of trap
- 3. Drainage area 4. Storage required
- 5. Storage provided (if applicable)
- 6. Outlet length or pipe sizes
- 7. Storage depth below outlet or cleanout elevation 8. Embankment height and elevation (if applicable)
- 9. The construction detail for each type of sediment trap designated.

Vermont Standards and Specifications For Erosion Prevention & Sediment Control -2006-

Page 5.24

STANDARD AND SPECIFICATIONS FOR SEDIMENT TRAP

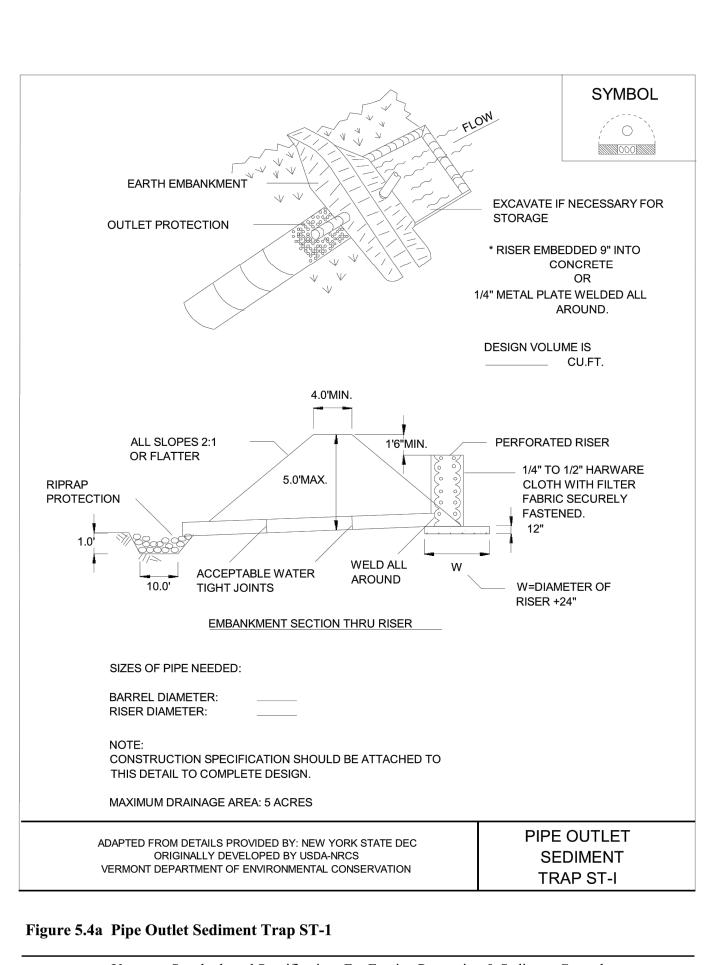
Sediment traps must outlet onto stabilized (preferable undisturbed) ground, into a watercourse, stabilized channel, or into a storm drain system. Distance between inlet and outlet should be maximized to the longest length practicable.

<u>Type of Sediment Traps</u>

There are five (5) specific types of sediment traps which vary according to their function, location, or drainage area.

- I. Pipe Outlet Sediment Trap
- II. Grass Outlet Sediment Trap
- III. Catch Basin Sediment Trap IV. Stone Outlet Sediment Trap
- V. Riprap Outlet Sediment Trap

I. Pipe Outlet Sediment Trap


A Pipe Outlet Sediment Trap consists of a trap formed by embankment or excavation. The outlet for the trap is through a perforated riser and a pipe through the embankment. The outlet pipe and riser shall be made of steel, corrugated metal or other suitable material. The top of the embankment shall be at least $1\frac{1}{2}$ feet above the crest of the riser. The top 2/3 of the riser shall be perforated with one (1) inch nominal diameter holes or slits spaced six (6) inches vertically and horizontally placed in the concave portion of the corrugated pipe.

No holes or slits will be allowed within six (6) inches of the top of the horizontal barrel. All pipe connections shall be watertight. The riser shall be wrapped with $\frac{1}{2}$ to $\frac{1}{4}$ inch hardware cloth wire then wrapped with filter cloth with a sieve size between #40-80 and secured with strapping or connecting band at the top and bottom of the cloth. The cloth shall cover an area at least six (6) inches above the highest hole and six (6) inches below the lowest hole. The top existing grass. The outlet crest width (feet) shall be of the riser pipe shall not be covered with filter cloth. The riser shall have a base with sufficient weight to prevent flotation of the riser. Two approved bases are:

1. A concrete base 12 in. thick with the riser

embedded 9 in. into the concrete base, or

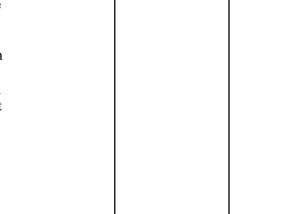
Vermont Standards and Specifications For Erosion Prevention & Sediment Control Page 5.22 -2006-

Vermont Standards and Specifications For Erosion Prevention & Sediment Control -2006-Page 5.25

2. One quarter inch, minimum, thick steel plate attached to the riser by a continuous weld around the circumference of the riser to form a watertight connection. The plate shall have 2.5 feet of stone, gravel, or earth placed on it to prevent flotation. In either case, each side of the square base measurement shall be the riser diameter plus 24 inches.

Select pipe diameter from the following table:

Minimum Sizes				
Barrel Diameter ¹ (in.)	Riser Diameter ¹ (in.)	Maximum Drainage Area (ac.)		
12	15	1		
15	18	2		
18	21	3		
21	24	4		
21	27	5		


¹ Barrel diameter may be same size as riser diameter.

Pipe outlet sediment traps shall be limited to a five (5) acre maximum drainage area with a required storage of 3600 cubic feet per acre of drainage area.

Pipe outlet sediment traps may be interchangeable in the field with stone outlet or riprap sediment traps provided that these sediment traps are constructed in accordance with the detail and specifications for that trap.

II. Grass Outlet Sediment Trap

A Grass Outlet Sediment Trap consists of a trap formed by excavating the earth to create a holding area. The trap has a discharge point over natural equal to four (4) times the drainage area (acres) with a minimum width of four (4) feet. The outlet shall be free of any restrictions to flow. The outlet lip must remain undisturbed and level. The volume of this trap shall be computed at the elevation of the crest of the outlet. Grass outlet sediment traps shall be limited to

level, at least one (1) foot below top and no more than one (1) foot above the outlet. Stone used in the outlet riprap (4 in. x 8 in.). To provide mo trapping effect, a layer of filter cloth embedded one (1) foot back into the the outlet stone or a one (1) foot thic inch or finer aggregate shall be place face of the outlet.

Vermont Standards

STAN

a five (5) acre maximum drainage a storage of 3600 cubic feet per acre

III. Catch Basin Sediment Trap

A Catch Basin Sediment Trap cons formed by excavation on natural groups discharges through an opening in a s structure. This opening can either b or a temporary opening made by om blocks in the inlet.

A yard drain inlet or an inlet in the dual highway could use the inlet op outlet. The trap should be out of the not to interfere with future compact construction. Placing the trap on th the opening and diverting water from the trap is one means of doing this. sediment traps shall be limited to a maximum drainage area. The volum measured at the elevation of the cre (invert of the inlet opening).

IV. Stone Outlet Sediment Trap

A Stone Outlet Sediment Trap cons formed by an embankment or excav of this trap is over a stone section p ground. The minimum length (feet) be equal to four (4) times the draina with a required storage 3,600 cubic drainage area.

The outlet crest (top of stone in wei

		S	
	SPECIFICATIONS		A
	OR ENT TRAP		
no cuith a na mina d	Stone Outlet Sediment Traps may be interchangeable		ASSOCIATES, INC. DUTH BURLINGTON, VT 05403 4-2271 web: www.cea-vt.com
rea with a required of drainage area.	in the field with pipe or riprap outlet sediment traps provided they are constructed in accordance with the	P: 802-864-2323 FAX: 802-86 COPYRIGHT © 2019 – ALL	
	detail and specifications for those traps. Stone outlet sediment traps shall be limited to a five (5) acre	DRAWN	
ists of a basin ound that	maximum drainage area. V. Riprap Outlet Sediment Trap	SAL CHECKED	
storm drain inlet be the inlet opening	A Riprap Outlet Sediment Trap consists of a trap	DSM	
nitting bricks or	formed by an excavation and embankment. The outlet for this trap shall be through a partially excavated channel lined with riprap. This outlet channel shall	APPROVED DSM	
median strip of a ening for the type	discharge onto a stabilized area or to a stable watercourse. The riprap outlet sediment trap may be	CLIENT:	I
e roadway so as ion or	used for drainage areas of up to a maximum of 15 acres.		
e opposite side of m the roadway to Catch basin	Design Criteria for Riprap Outlet Sediment Trap		AND
three (3) acre ne of this trap is	1. The total contributing drainage area (disturbed or undisturbed either on or off the developing	DEVELOPI	MENT, LLC
st of the outlet	property) shall not exceed 15 acres.		RIAL AVENUE
	2. The storage needs for this trap shall be computed using 3600 cubic feet of required storage for each acre of drainage area. The storage volume	WILLISTON, VI	ERMONT 05403
ists of a trap vation. The outlet	provided can be figured by computing the volume of storage area available behind the outlet		
laced on level) of the outlet shall	structure up to an elevation of one (1) foot below the level weir crest.		
ge area (acres) e feet per acre of	3. The maximum height of embankment shall not exceed five (5) feet.	PROJECT:	
r section) shall be	4. The elevation of the top of any dike directing		
o of embankment e ground beneath	water to a riprap outlet sediment trap will equal or exceed the minimum elevation of the embankment along the entire length of this trap.		RLAND
shall be small ore efficient 1 should be	Optional Dewatering Methods		RMS
e upstream face of ck layer of two (2)	Optional dewatering devices may be designed for use	COMN	IUNITY
ed on the upstream	with sediment traps. Included are two methods, which may be used.	SEVERAN	ICE ROAD
			ESTER, VT
-	or Erosion Prevention & Sediment Control 006- Page 5.23		
-		DATE CHECKED	REVISION
-		DATE CHECKED	REVISION
-		DATE CHECKED	REVISION
-		DATE CHECKED	REVISION
-		DATE CHECKED	REVISION
-			REVISION
-		ESPC	
-		ESPC SPECIFIC/	
-		ESPC	
-		ESPC SPECIFIC/	
-		ESPC SPECIFIC/	
-		ESPC SPECIFIC/ DETAILS	
-		ESPC SPECIFIC/ DETAILS	ATIONS & DRAWING NUMBER
-		ESPC SPECIFIC DETAILS	ATIONS &
-		DATE 11/01/2019 SCALE	ATIONS & DRAWING NUMBER

Erosion Prevention and Sediment Control Program

Construction Stormwater Discharge

The development of a new mixed use project by Ireland Development, LLC is to be permitted as an individual site under the State of Vermont Construction General Permit (CGP# 3-9020) for Discharges of Stormwater from Construction Sites issued for this project.

Parties associated with the issuance and implementation of the requirements set forth in the General Permit and the details within this document include:

-State of Vermont Department of Environmental Conservation, Water

Quality Division (State) -State of Vermont Environmental Commission (Act 250)

- -On-Site Plan Coordinator (OSPC)
- -Environmental Specialist (ES)
- -Engineer (E) -Site Owner (Owner)

-Site Erosion Prevention and Sediment Control Plan Designer (EPSC

Designer)

-Owner's Builder/Contractor (Contractor)

This permit has the goal of minimizing discharges of sediment-laden water from the site by implementing appropriate best management practices (BMP's) during construction an stabilization of the site.

The Contractor will be responsible for ensuring compliance with all construction stormwater permit conditions within the entire project construction area

Groundwater Dewatering

If dewatering of trenches, pits or other excavations is required during construction, the groundwater will be pumped to a suitable settling facility approved by the engineer and the VT DEC.

Inspection Program

The inspection responsibilities of the Contractor and the On-Site Plan Coordinator (OSC) are outlined in the chart below:

Feature	Daily	Weekly	After Rain Event	Bi-Weekly
Storm Sewer Inlets	С	OSPC,	C, OSPC	ES
Silt Fence	С	OSPC,	C, OSPC	ES
Check Dams	С	OSPC,	C, OSPC	ES
Construction Fencing	С	OSPC,	C, OSPC	ES
Construction Entrance	С	OSPC,	C, OSPC	ES
Stabilized Areas	С	OSPC,	C, OSPC	ES
Report	С	OSPC,	OSPC	ES

Sunderland Woods Community

Erosion Protection and Sediment Control Narrative October 30, 2019

Ireland Development, LLC is proposing the construction of a mixed use project on 33.7 acres in the southeast guadrant of the Severance Road - Route 2/7 Corridor.

Existing Conditions - The 33.7 acre property is comprised of a combination of modest topography in the northern portion of the property and rolling topography in the southern

Of the 33.7 acres of the property, approximately 13.4 acres of the property is proposed to be disturbed as part of this project.

The site is comprised of an upper plateau with fine sandy loam overlying silty clay while the steep slope areas are loams and silty loams over a silty clay base.

The NRCS soil mapping of the property is summarized below.

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
AdA	Adams and Windsor loamy sands, 0 to 5 percent slopes	.15	0.3	0.9%
AgA	Agawam fine sandy loam, 0 to 5 percent slopes	.20	3.9	11.2%
BIA	Belgrade and Eldridge soils, 0 to 3 percent slopes	.32	2.9	8.3%
HIB	Hartland very fine sandy loam, 2 to 6 percent slopes	.32	9.8	27.8%
HIE	Hartland very fine sandy loam, 25 to 60 percent slopes	.32	13.1	37.1%
HnA	Hinesburg fine sandy loam, 0 to 3 percent slopes	.17	1.2	3.4%
MuD	Munson and Belgrade silt loams, 12 to 25 percent slopes	.32	2.2	6.3%
МуВ	Munson and Raynham silt loams, 2 to 6 percent slopes	.49	1.8	5.1%
Totals for Area of Inter	rest		35.2	100.0%

Except for the Munson and Raynham silt loams, 94.9% of the site has a K value of 0.32 or less which means that this site has a moderate to high rate of erodibility and will need to be managed by reducing the time of exposure and mitigation with proper BMPs.

Class II wetlands are located in the mid northern portion of the property. The only other wetlands are located along the valley of the drainages flowing out in the southerly direction.

Large portions of the proposed development area are currently in active turn management while approximately 1/3 of the proposed disturbance area is wooded.

Approximately 1/3 of the property is currently is agricultural use and about 75% of the property is located on the upper plateau which by its flat nature, creates a lesser exposure to sediment laden runoff to the receiving waters. Any dewatering activities will require adequate detention time to settle the fines and clays. It is proposed that polyacrylimides be used to mitigate the size of the structures to provide proper settling of suspended solids.

Most of the site has been designed to provide a 50-foot buffer to existing Class II wetlands, the exception being 24s SF of wetland being impacted for outflow management. The topographical mapping for the property was developed from a series of field surveys.

Areas of Concern - The primary areas of concern for the management of EPSC include (These are depicted on Sheet C3.0):

- 1. The construction of the stormwater management facility in the drainage way at the west end of the property.
- 2. The placement of fill over the top of the embankments.
- 3. Work adjacent to the Class II wetland.

Phasing - The project is proposed to be constructed in Phases over three construction seasons beginning in 2020 and ending in 2022. The goal is to construction critical water, sewer and drainage facilities first with the supporting roadways and then to expand the utility roadway network in subsequent phases.

The phasing work areas are shown on Sheet A6.0A

Best Management Practices- The project will use the following BMPs for the protection of the soils and mitigation of suspended solids in the runoff.

- 1. Construction entrances prior to entering a paved surface
- 2. Washing equipment tire and tracks in upland areas away from wetlands, streams or
- drainages 3. Construction fencing for limits of disturbance (LOD) in areas within 50 feet of a wetland or stream
- 4. Construction flagging for LOD
- 5. Super silt fence for all work within 50-feet of a wetland or stream.
- 6. Silt fence at all downgradient locations with area of disturbance limited to 1/3 acre for each low point in the fence installation.
- Surface water diversion for areas with large upgradient watersheds
- Sediment traps at low points of sites. 8 9. Inlet Protection.
- 10. Minimizing the amount of time within each work area.
- 11. Stabilizing the site within 3 days of completion of finish grading.
- 12. Utilize erosion control matting (ecm) or straw mulch in all areas of disturbance.
- Project Characteristics The average slope of the areas of disturbance is 8%.

The project does not propose only minor wetland impacts.

Except for the import of granular materials required for the construction of the roadways, sidewalks,, and pie work, the intent of the project is to balance the cuts and the fills so as to minimize the need export waste materials or import fill material.

Preconstruction measures will include the use of construction fencing to demarcate the limits of disturbance along those areas where sensitive features are present (e.g. wetlands or tree retention areas), construction flagging for the remaining areas, Construction access (entrances road and laydown areas) stabilization, surveyed tree clearing limits and silt fence. These areas are shown on Sheets C6.0 thru C6.5.

The on-site temporary measures will include the use of contained sites (e.g. pond excavation, utility trenching), inlet protection, temporary stabilization of disturbed surfaces through the use of straw mulch or erosion control matting.

The temporary off-site measures (outside of specific phase areas) to be employed will include the previously discussed surface water diversions and stormwater management facilities. These are shown on Sheets C6.0 thru C6.5.

The permanent on-site measures to be used to stabilize the site will include paved roadways, concrete sidewalks, paved recreation paths, and grassing of the remaining areas.

The project will require that within 7 days of initial disturbance that soils be permanently or temporarily stabilized through the use of hay mulch, ECM, or a crushed stone surface unless these areas are part of an on-going earth disturbance activity or are located within a contained area. The goal is to immediately grass each of the work areas in support of maximizing grow-in of the site.

Winter Construction - Winter construction is proposed.

EROSION AND SEDIMENT CONTROL STRATEGY - The following techniques are anticipated to be utilized as part of the erosion and sediment control program. The timing and use of each of the techniques is further defined within the Construction Phasing of the project. But will be the responsibility of the contractor to implement on an as needed basis based upon the changing nature of the site disturbance activities only controlled by the site contractor.

1. Use rapidly germinating cover crops prior to seeding when the ground would otherwise be bare.

2. Include rapidly germinating grasses in the seed mixtures when they will not compromise the integrity of the final product. 3. Utilize hydroseeding with mulch when feasible.

4. Utilize erosion control netting or blankets, with or without seed contained in them on slopes greater than 3:1.

5. Utilizing stabilization materials or sodding areas where runoff is rapid or concentrated. 6. Limiting traffic in the vicinity of streams and wetlands and installing as few temporary crossings as possible.

7. Installing water bars (swale/berms) on slopes to and channels before it gains sufficient volume and momentum to cause scouring.

8. Using stone check dams and silt fences once the soil has begun to move. 9. Preserving existing trees and vegetation near and within buffer areas until after the site has been stabilized.

10. Controlling dust by providing parking lots with prepared surfaces, limiting traffic in all possible ways, planting stockpiles with cover crops or protective blankets, using water trucks, refraining from cultivating and smoothing seedbeds until immediately prior to seeding.

Field Protocol - Areas of special concern will be reviewed with the Contractor prior to initiating site clearing activities. These areas will be continually reviewed by the Contractor and the OSPC and any issues will be identified in the daily or weekly reports. All reports shall be distributed via e-mail to all parties in support of the efforts to address areas of concern in a timely manner.

Best Management Practices - BMP's - Examples include, but are not limited to: sediment fence, erosion control matting, seed, and mulch in accordance with the attached Construction Phasing plan and the Vermont Erosion Prevention and Sediment Control Filed Guide.

Installation Sequencing

1. Construction Staking

A. The construction limits are to be staked in the field by a qualified Surveyor. B. The remaining clearing and site disturbance limits shall be reviewed by the Engineer prior to initiating any clearing. The Engineer shall designate specimen trees and critical vegetative cover along buffer areas that are to remain during the initial phases of construction.

2. Clearing - The clearing limits shall be demarcated in the field with continuous flagging. Construction fencing shall be installed along the edges of any stream or wetland buffer areas adjacent to or on the lot. Prior to any timber being harvested and removed from the site, a construction entrance pad shall be installed at the entrance point to the project site. Chipping of branches and other woody material is allowed but the material must be disposed of in an approved manner.

3. Inlet Protection - Ensure that BMP's are in place and functioning at catch basins, drainage swales, culvert inlets, and other areas as shown on the EPSC site plan.

4. Protection of Adjacent Sites - Install BMP's along the common lot line of adjacent sites. This would include construction fencing to help avoid unintentional encroachment onto the adjacent property and silt fence when the adjacent lot is downgradient of the construction site.

5. Protection of Construction Site - Prior to initiating earthwork on the lot, surface runoff from areas upgradient portions of the construction site shall be diverted from the proposed areas of disturbance using diversion swales, structures, sand bags, curbing, or other approved method. Protect steep exposed slopes from surface runoff by collecting runoff at the top of the slope and diverting it into a stabilized conveyance, such as a slope drain or stabilized swale.

6. Grubbing

A. Grubbing shall occur only after the erosion control measures around the downgradient perimeter of the site has been established. Those locations shall be reviewed with the Environmental Specialist and Independent Engineer. Existing topsoil shall be retained and stockpiled on site for re-use.

B. The Contractor shall remove all remaining woody material and tree stumps and dispose of them utilizing one or more of the following methods:

i. Burning, provided that permits are acquired from the State of Vermont Solid Waste Management Division and the Town of Shelburne..

ii. Disposal on site within designated slope disposal areas only after an insignificant waste Disposal Permit is acquired. At these sites the following standards shall be met a. 3' separation to the seasonal high groundwater table.

b. 100' separation to surface waters.

c. Thorough mixing of soil and woody material to minimize future settlement.

d. Covering with a minimum of four (4) feet of cover material. iii. Chipping with on-site disposal in accordance with Item 5 or disposal off-site in accordance with State requirements.

iv. Disposal at a certified landfill facility.

C. All grubbing of woody materials shall be completed to a depth of at least 12".

D. The Contractor shall remove all medium to large stones and boulders present within the limits of disturbance including future drainage and infrastructure improvements. i. The larger boulders shall be saved for use in retaining walls.

ii. The smaller stones may be buried in predetermined disposal sites.

7. Soil Stockpiles

A. The Contractor shall strip and stockpile as much as possible of the native topsoil for re-use during a later stage of the project.

B. Each topsoil stockpile shall be placed in locations respective of existing environmental features of the site. Special consideration shall be made to maximize the distance (minimum 100') to the nearest water course.

C. Each topsoil pile shall be surrounded on the downgradient side by a row of silt fence. D. Any topsoil pile which is to remain in place for greater than 15 days shall be temporarily seeded with winter rye to preserve the integrity and minimize the erosion of the soil constituents and release of soluble nutrients.

E. The Contractor shall locate stockpiles on the uphill side of the disturbed areas, if possible. During windy conditions, stockpiled material shall be covered or watered appropriately to prevent wind erosion.

8. Earth Excavation/Grading A. Mass earth placement to create the building plateau shall commence only after all remaining EPSC measures depicted on the plans are installed. B. Surface water diversion BMP's shall employed at the high point of the site until the new drainage swale/hollow is installed. C. The Contractor shall also limit the soil disturbance and seeding application dates to between

D. All exposed soils areas (not including structural fill soils or stabilized stone areas) shall be protected prior to any forecasted rain event with mulch or erosion control matting. Pin matting with wire staples in accordance with the manufacturers recommendations to ensure full bonding with soil surface. E. Install stone check dams in grass-lined swales 50 feet on center to prevent silt from washing into the drainage system during construction. Check dams are to be removed when vegetation is established.

process. E. Maintenance: needed.

rain events.

1. Use rapidly germinating cover crops prior to seeding when the ground would otherwise be 2. Include rapidly germinating grasses in the seed mixtures when they will not compromise the integrity of the final product. 3. Utilize hydroseeding with mulch when feasible.

Owner/Contractor Responsibilities: 1. The Owner/Contractor (O/C) is responsible for the on-going maintenance of all lot specific erosion prevention and sediment control devices and practices. Any subcontractor conducting earth disturbance activities on the project site shall review the EPSC plan and General Permit and shall complete an application and file with the State a request for Co-Permittee status.

2. Periodic inspections shall be performed in accordance with the above schedule to ensure that the erosion and sediment control measures are functioning as required. In addition to the standard periodic inspections, inspections of all of the on-site systems shall be conducted after a rain event causing stormwater to leave the site. Any problems noted during these inspections shall be corrected immediately.

3. Once construction has commenced, the O/C is responsible for the maintenance of erosion and sediment control measures protecting nearby stormwater collection systems and water courses. It is critical that sediment not be allowed to invade the receiving waters.

4. The temporary construction entrance provides a place for parking vehicles off-street and a spot where material can be off-loaded. The intent of the requirement is to provide a stable surface for parking vehicles where mud and debris is not likely to be tracked onto the street. Proper maintenance of the area is required until such time as a permanent driveway can be put into place.

5. During the entire construction process, the O/C is responsible for ensuring that mud, dirt, rocks, and other debris are not allowed to erode or be tracked onto the street system by construction vehicles. Should any mud or other debris find its way to the road system, the O/C shall take immediate steps to have it removed.

C.

CONTINUED ON TO C6.12 EPSC

April 16th and September 15th.

9. Temporary Construction Entrance - Required for entrance and egress points from the site.

10. Planting Preparation, Seed, Mulch, Germination, Maintenance

A. The preparation of the topsoil for planting includes final smoothing and removal of small stones. This work shall occur immediately prior to seedingor placement of EC matting so as to avoid exposure to erosion damage and to reduce the amount of dust generated as part of this

B. Planting is to occur immediately after the topsoil preparation with special caution being given to upcoming storm events that may displace the seed/soil.

C. The planted areas shall be water regularly to protect the new plants but not over watered so as to cause excess runoff and erosion.

D. All ditches that are not stone-lined shall be topsoiled, and stabilized with erosion control matting. Any area which shows signs of erosion shall be restabilized immediately and maintained until permanent vegetation is established. of

1. All erosion control measures shall be inspected weekly and repaired and/or replaced as

2. All erosion control measures shall be inspected after periods of heavy rain. 3. The stabilized road entrance shall be top dressed with additional stone should the existing

stone become clogged with sediment. 4. Hay or straw mulch is subject to wind action. Mulch, where permitted) may require anchoring as the weather conditions warrant.

11. Surface Stabilization - The following stabilization methods are required: A. Temporary stabilization - Straw mulch (during the earliest phases of the project) or erosion control matting placement is required on all non-contained disturbed areas prior to forcasted

B. Install stone check dams in drainage swales 50 feet on a center to prevent silt from washing into the drainage system during construction. Check dams shall be removed when vegetation is established.

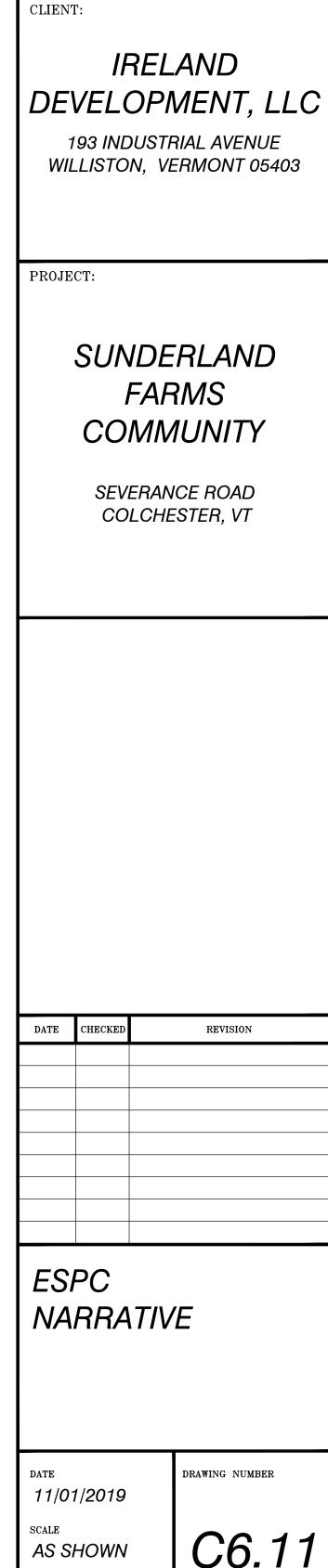
C. Control dust through the application of water. The exact number of applications and amount shall be based upon field and weather conditions. It shall be spread in such manner and by such devices that uniform distribution is attained over the entire area on which it is ordered placed.

D. Install crushed stone apron of at least 15' width around the perimeter of the building following backfill of the foundation walls.

E. Install temporary (sacrificial) crushed stone on all access ways and laydown areas. These areas will be covered later with the roadway/perking lot base materials or with topsoil. F. Permanent Stabilization - Required of all surfaces at the completion of construction. The

Contractor will install 4" topsoil, sod, seed (where permitted), fertilize, lime, and mulch (seeded areas) the disturbed areas as soon as possible following completion of construction.

6. Maintenance - Silt Fence


A. Inspect sediment fences daily to ensure that construction activities have not impacted their operability and after each rainfall event causing runoff from the site. B. Should the fabric of the sediment fence collapse, tear, decompose, or become ineffective, replace promptly.

Remove the sediment deposits as necessary to provide adequate storage volume for the next rain event and to reduce pressure on the fence. Take care to avoid damaging or undermining the fence during clean-out.

D. If the utilities are installed after BMP's have been put into place, the permit holder is responsible for control of erosion and sediment during the construction process and for ensuring that all BMP devices are re-installed per the original design.

SITE ENGINEER: CIVIL ENGINEERING ASSOCIATES, INC. 10 MANSFIELD VIEW LANE, SOUTH BURLINGTON, VT 05403 P: 802-864-2323 FAX: 802-864-2271 web: www.cea-vt.com

COPYRIGHT (C) 2019 - ALL RIGHTS RESERVED DRAWN SAL CHECKED DSM APPROVED DSM

AS SHOWN PROJ. NO. 14134

On-Site Plan Coordinator Inspections

1. The OSPC will normally inspect erosion prevention and sediment control measures in conjunction with routine inspections. Inspections will ensure that proper placement and installation of the erosion prevention and sediment control measures are in place.

2. The first inspection will occur prior to clearing of the site to ensure that proper BMP's are in place, including proper demarcation of the clearing limits, installation of construction fencing along the stream/wetland buffer limits, and any other devices required to protect the receiving waters from sediment deposition during the clearing phase.

3. Prior to initiating grubbing and mass earth excavation, the OSPC shall inspect the site to ensure that the construction fencing, silt fence, construction entrance, and other required BMP's are in place.

4. The OSPC will conduct weekly inspections and will prepare weekly reports which are to remain on-site until final stabilization is acheived.

Additional Requirements:

1. All sediment removed from sediment control practices as part of maintenance shall be disposed of in an area that is:

- a. Less than 5% slope.
- b. At least 100ft from any downslope water body or conveyance to a waterbody (including storm drain inlet or ditch)
- c. Area shall be vegetated
- 2. Stabilize Exposed Soil

Purpose:

Seeding and mulching, applying erosion control matting, and hydroseeding are all methods to stabilize exposed soil. Mulches and matting protect the soil surface while grass is establishing.

Requirements:

All areas of disturbance must have temporary or permanent stabilization within 7 days of initial disturbance, as stated in the project authorization. After this time, any disturbance in the area must be stabilized at the end of each work day.

The following exceptions apply:

- Stabilization is not required if earthwork is to continue in the area within the next 24 hours and there is no precipitation forecast for the next 24 hours.
- Stabilization is not required if the work is occurring in a self-contained excavation (i.e. no outlet) with a depth of 2 feet or greater (e.g. house foundation excavation, utility trenches).

All areas of disturbance must have permanent stabilization within 48 hours of reaching final grade.

How to comply:

Prepare bare soil for seeding by grading the top 3 to 6 inches of soil and removing any large rocks or debris.

Seeding Rates for Temporary Stabilization April 15 - Sept. 15 --- Ryegrass (annual or perennial: 20 lbs/acre) Sept. 15 - April 15 --- Winter rye: 120 lbs/acre

Seeding Rates for Final Stabilization: Choose - See Sheet C6.6

Mulching Rates

April 15 - Sept.15 -- Hay or Straw: 1 inch deep (1-2 bales/1000 s.f.) Sept.15 - April 15 -- Hay or Straw: 2 in. deep (2-4 bales/1000 s.f.)

Erosion Control Matting

As per manufacturer's instructions

Hydroseed

As per manufacturer's instructions

3. Stabilize Soil at Final Grade

Purpose:

Stabilizing the site with seed and mulch or erosion control matting when it reaches final grade is the best way to prevent erosion while construction continues.

Requirements:

Within 48 hours of final grading, the exposed soil must be seeded and mulched or covered with erosion control matting.

How to comply:

Bring the site or sections of the site to final grade as soon as possible after construction is completed. This will reduce the need for additional sediment and erosion control measures and will reduce the total disturbed area.

For seeding and mulching rates, follow the specifications under Rule 8, Stabilizing Exposed Soil.

4. Dewatering Activities

Purpose:

Treat water pumped from dewatering activities so that it is clear when leaving the construction site.

Requirements:

Water from dewatering activities that flows off of the construction site must be clear. Water must not be pumped into storm sewers, lakes, or wetlands unless the water is clear.

How to comply:

Using sock filters or sediment filter bags on dewatering discharge hoses or pipes, discharge water into silt fence enclosures installed in vegetated areas away from waterways. Remove accumulated sediment after the water has dispersed and stabilize the area with seed and mulch.

END OF SECTION ESPC NARRATIVE

SECTION 02150 - EROSION CONTROL

PART 1 - GENERAL

1.01 SUMMARY

A. Section includes:

1. The work under this section includes but is not limited to providing all labor, equipment and materials for the installation of all required site related erosion control measures. If not otherwise directed on the plans, erosion control shall be in strict conformity with the latest revision of the "Vermont Erosion Prevention and Sediment Control Field Guide" available from the Stormwater Section of the Vermont Water Quality Division.

B. Related sections:

1. Section 02210 - Site Earthwork 2. Section 02936 - Permanent Seeding

1.02 GENERAL NOTES

A. The discharge of sediment laden water from the project site is prohibited. All discharged water from dewatering operations shall discharge into a temporary sedimentation basin.

B. Contractor shall install all erosion control measures as depicted on plans and details or as recommended by the Stormwater Section of the Vermont Water Quality Division prior to any construction. Contractor shall also be responsible for inspecting and maintaining all erosion control measures until project is completed.

C. Contractor shall also limit the soil disturbance and seeding application dates to between April 15th and September 15th. If soil disturbance occurs later than October 15th and prior to April 15th, winter erosion control measures will be necessary. Contractor shall consult with the Engineer for additional site specific winter erosion control measures.

D. All stockpile material (topsoil, borrow, etc.) will have a silt fence constructed around the perimeter. Seed and mulch stockpiled material as soon as possible to prevent soil erosion and sedimentation off site. Locate stockpiles on the uphill side of the disturbed areas, if possible. During windy conditions, stockpiled material shall be covered or watered appropriately to prevent wind erosion.

E. Slopes greater than 3:1 (H:V) shall have erosion control matting ting installed to stabilize the slope and reduce the erosion potential. Install matting so that all parts are in contact with the underlying soil. Pin matting with wire staples 3' o.c. to ensure full bonding with soil surface. Matting shall be installed in accordance with manufacturer's recommendations.

F. Control dust through the application of calcium chloride or water. An average application of one pound of calcium chloride per square yard of exposed area should be considered for each treatment. The exact number of applications and amount of dust controller shall be based upon field and weather conditions. It shall be spread in such manner and by such devices that uniform distribution is attained over the entire area on which it is ordered placed.

PART 2 - PRODUCTS

2.01 EROSION CONTROL NETTING

A. Jute netting shall consist of undyed and unbleached yarn woven into a uniform open plain weave mesh.

2.02 EROSION CONTROL MATTING

A. Where required on the plans or where directed by the Engineer, erosion control blankets (matting) shall be North American Green S150BN for swales and slope stabilization, or approved equal, for all areas for permanent installation, and C125 and SC150 where matting is being used as temporary protection of disturbed soils until a final surface stabilization method is employed.

2.03 FILTER FABRIC

A. When filter fabric is required, it shall conform to the requirements of Mirafi 500X or approved equivalent.

2.04 CALCIUM CHLORIDE

A. Calcium chloride shall conform to the requirements of AASHTO M 144. Either regular flake calcium chloride, Type 1 or concentrated flake, pellet or other granular calcium chloride, Type 2, may be used.

2.05 WATER

A. All water used shall be clean and free of harmful amounts of oil, salt, acids, alkalies, sugar, organic matter and other substances injurious to the finished product, plant life or the establishment of vegetation.

2.06 SEDIMENT WATTLES

approved equal.

2.07 POLYACRUMIDE

A. Polyacrumide (polymer) logs (blocks) shall only be used with permission from the Engineer and VT ANR Water Quality Division. Type shall be Applied Polymer Systems, Inc. floc log or approved equal. The type of floc log used shall be based upon a site specific testing of the native soils.

2.08 STONE CHECK DAMS

A. Stone check dams should be constructed of 2 to 3 inch stone. Hand or mechanical placement will be necessary to achieve complete coverage of the ditch or swale and to ensure that the center of the dam is lower than the edges. The maximum contributing drainage area from any one check dam shall not exceed two acres. See the detail drawing in the Erosion Control Details Drawings for the proper installation of stone check dams.

PART 3 - EXECUTION

3.01 HAY BALE CHECK DAM AND INLET PROTECTION

A. Hay bales shall not be used to construct check dams or as a means of inlet protection.

A. Sediment wattles shall be King Fibre Corporation silt trapper sediment wattles or

3.02 SILT FENCES

A. The silt fences shall be constructed in accordance with the construction detail. The fence shall generally be placed 10 feet from the toe of the slope or as shown on the plans. The ends of the fence shall be placed uphill to form a horseshoe shape to trap all runoff. Silt fence shall not be placed across areas of concentrated flow.

B. The silt fences shall be inspected periodically for damage or build-up of sediments. All damaged fences shall be repaired or replaced. Sediment deposits shall be removed from the fence as they build up and be placed in an area where there is no danger of further erosion.

3.03 EROSION MATTING

A. Erosion matting shall be placed on all grass-lined ditches with profile grades exceeding 5.0% and all other areas called out on the plans, and shall be placed and maintained in accordance with the Vermont Agency of Transportation Standard Specifications Sections 654 and 755.07.

3.04 RESTORATION

A. As soon as construction is completed in a given area, it shall be topsoiled, seeded, fertilized and mulched as specified in Section 02936 - Permanent Seeding.

3.05 STABILIZED ROAD ENTRANCE

A. A stabilized pad of crushed stone located at any point where traffic will be entering or leaving the construction site to or from a public right-of-way or street or as shown on the drawings shall be constructed for the purpose of preventing the tracking of sediment onto public rights-of-way.

- B. Design Criteria:
- 1. Use 1.5 to 2.5 inch stone. 2. Use 8 inch laver of stone.
- 3. Stone pad shall be full width of entrance.
- 4. Minimum length shall be 50 feet.

3.06 GRASS-LINED DITCHES

A. All ditches that are not stone-lined shall be topsoiled, seeded, fertilized and mulched. Any area which shows signs of erosion shall be reseeded immediately and maintained until permanent vegetation is established.

3.07 MAINTENANCE

A. All erosion control measures shall be inspected daily and repaired and/or replaced as needed.

B. All erosion control measures shall be inspected after periods of heavy rain.

C. The stabilized road entrance shall be top dressed with additional stone should the existing stone become clogged with sediment.

D. Hay or straw mulch is subject to wind action. Mulch may require anchoring as the weather conditions warrant.

3.08 STONE CHECK DAMS

A. The drainage area of the ditch or swale being protected should not exceed 10 acres.

B. The drainage area to any check dam shall not exceed 2 acres.

C. The maximum height of the check dam should be 2 feet. The center of the check dam must be at least 6 inches lower than the outer edges. The maximum spacing between the dams should be such that the toe of the upstream dam is at the same elevation as the top of the downstream dam.

D. Check dams should be installed before runoff is directed to the swale or drainage ditch.

3.09 DEWATERING METHODS

A. All dewatering methods associated with this project are to be approved by the VT DEC and the engineer prior to use.

END OF SECTION 02150

SECTION 02936 - PERMANENT SEEDING

PART 1 - GENERAL

1.01 SUMMARY

A. Section includes:

1. Furnishing all labor, materials, and equipment to complete all seeding work as shown on the drawings and specified herein.

2. Except where otherwise shown or specified, the Contractor shall seed all areas where new contours are shown on the drawings and all areas where existing ground cover has been disturbed by the Contractor's operations.

B. All work and materials of this Section shall conform to the applicable requirements of the VAOT Standard Specifications, Division 600.

1.02 SUBMITTALS

A. Provide the following for approval prior to delivery to the site: 1. Supplier's Certificate of Compliance attesting that lime, fertilizer and seed meet the requirements specified.

2. The Contractor shall provide representative topsoil samples for testing and approval, deliver samples to a public extension service agency testing laboratory, have testing report sent directly to the Engineer and pay all costs. Testing shall report on mechanical and chemical (pH soluble salts) analysis. Report shall be submitted at least one month before any loaming is to be done.

1.03 SEEDING SEASONS

A. Seeding and initial fertilizing shall be done between April 1 and June 1, between August 15 and October 15, or as permitted. Seeding shall not be done during windy weather or when the ground is frozen, excessively wet, or otherwise untillable. If seeding is done during July or August, additional mulch material may be required by the Engineer.

sieve

Ki Cr Pe Ke Re

3. Shade seed shall normally be used in shaded areas in or along the edge of wooded areas. This seed mixture shall conform to the following table:

Kin Cre

Tall Cro

B. The seed mixture shall be delivered in new, clean, sealed containers. Labels and contents shall conform to all State and Federal regulations. Seed shall be subject to the testing provisions of the Association of Official Seed Analysts.

A. Mulch must be installed on all seeded areas. The following mulches are acceptable for

1. Hay mulch free of weeds and coarse matter at a rate of 90 pounds per 1,000 square 2. Wood fiber applied in a slurry (1/6" or longer) at a rate of 40 pounds per 1,000 square

A. All water used shall be obtained from fresh water sources and shall be free from injurious chemical and other toxic substances harmful to plant life. No water which is brackish will be permitted at any time. The Contractor shall identify to the Engineer all sources of water at least two weeks prior to use. The Engineer, at his discretion, may take samples of the water at the source or from the tank at any time and have a laboratory test the samples for chemical and saline content. The Contractor shall not use any water from any source which

is disapproved by the Engineer following such tests.

A. Examine finish surfaces and grades. Do not start seeding work until unsatisfactory conditions are corrected. Perform seeding work only after planting and other work affecting ground surface has been completed. B. Notify Landscape Architect at least seven (7) working days prior to starting seeding.

PART 2 - PRODUCTS

2.01 LIME

A. Lime shall be standard, ground dolomite limestone, agricultural grade, containing a minimum of 95% of calcium and magnesium carbonates. 100% shall pass the 10 mesh sieve: minimum 90% shall pass the 20 mesh sieve; minimum 40% shall pass the 100 mesh

2.02 FERTILIZER

A. Fertilizer shall be commercial grade granular fertilizer as required for soil conditions as specified in Section 643 of the VAOT Standard Specifications. The fertilizer shall be delivered to the project in new, clean, sealed containers which bear a label fully describing the contents, the chemical analysis of each nutrient, the fertilizer grade, the net bulk, the brand and the name and address of the manufacturer. The fertilizer and labels shall conform to all existing State and Federal regulations, and shall meet the standards of the Association of Official Agricultural Chemists.

2.03 GRASS SEED

A. Provide fresh, clean, new-crop seed of the grass species, proportions and minimum percentages of purity, germination and maximum percentage of weed seed as follows:

1. Park seed shall normally be used on loam areas. This seed mixture shall conform to the following table:

Minimum N	Minimum		
ind of Seed	Purity	Germination	Lbs/Acre
reeping Red Fescue	96%	85%	40
erennial Ryegrass	98%	90%	50
entucky Bluegrass	97%	85%	25
edtop	95%	80%	5

TOTAL = 120

2. Slope seed shall normally be used for all slope work, usually 3:1 or steeper and shall conform to the following table:

Minimum Minimum

Kind of Seed	Purity	Germination	Lbs/Acre
Creeping Red Fescue	96%	85%	35
Perennial Ryegrass	98%	90%	30
Redtop	95%	80%	5
Alsike Clover	97%	90%	5
Birdsfoot Trefoil	98%	80%	5

TOTAL = 80

Minimum Minimum

nd of Seed	Purity	Germination	Lbs/Acre
eapling Red Eapour	059/	900/	20
eeping Red Fescue		80%	30
III Fescue	96%	80%	20
rownvetch	95%	80%	30
		TOTAL =	= 80

C. Seed that has become wet, moldy, or otherwise damaged will be rejected.

2.04 MULCH

2.05 WATER

PART 3 - EXECUTION

3.01 PREPARATION

C. Prepare areas immediately prior to seeding as follows:

1. Loosen soil of seed areas to a minimum depth of 4".

2. Remove stones over 1" in any diameter and sticks, roots, rubbish and extraneous matter.

3. Remove existing weeds and grasses by pulling or tilling under. 4. Grade areas to be seeded to a smooth, free draining even surface with a loose,

moderately coarse texture.

5. Remove ridges and fill depressions as required to drain. 6. Restore prepared areas if eroded or disturbed prior to seeding.

CONTINUED ON SHEET C6.13

C E E A			
CIVIL ENGINEERING A 10 MANSFIELD VIEW LANE, SO P: 802-864-2323 FAX: 802-864 COPYRIGHT © 2019 – ALL	UTH BURLINGTON, VT 05403 1-2271 web: www.cea-vt.com		
DRAWN SAL CHECKED DSM APPROVED DSM	NGITS RESERVED		
DEVELOPI 193 INDUST	AND MENT, LLC RIAL AVENUE ERMONT 05403		
FAF COMM SEVERAN	RLAND RMS IUNITY CE ROAD STER, VT		
DATE CHECKED	REVISION		
ESPC NARRATIV	Έ		
DATE 11/01/2019 SCALE AS SHOWN PROJ. NO. 14134	drawing number		

SITE ENGINEER:

3.02 SEEDING CONDITIONS

A. Seeding shall not be done when the ground is frozen, snow covered, muddy, or in any other unsatisfactory condition for planting. No seeding operations shall be conducted under adverse weather conditions or when soil moisture conditions are unfavorable (too wet or too dry) or when winds exceed 5 MPH.

B. Construction methods shall be those established as agronomically acceptable and feasible. The Contractor shall keep all equipment and vehicular and pedestrian traffic off areas that have been seeded to prevent excessive compaction and damage to young plants. Where such compaction has occurred, the Contractor shall rework the soil to make a suitable seed bed; then reseed and mulch such areas with the full amounts of the specified materials, at no extra expense to the Owner.

C. Surface and seepage water should be drained or diverted from the site to prevent drowning or winter killing of the plants.

D. All areas and parts of areas which fail to show a uniform stand of grass for any reason whatsoever shall be reseeded, and such areas and parts of areas shall be seeded repeatedly until all areas are covered with a satisfactory growth of grass.

E. Watering is considered a necessary element for establishment and survival.

F. Where ryegrass has been planted for temporary erosion control and has not been eliminated prior to the completion of the work, such areas shall be disced at least 3 inches deep and seeded to permanent grasses to prevent the ryegrass from reseeding and becoming competitive with and retarding development of the permanent cover.

3.03 SEEDING

A. Lime and fertilizer should be applied prior to or at the time of seeding and incorporated into the soil. Kinds and amounts of lime and fertilizer should be based on an evaluation of soil tests. When a soil test is not available, the following minimum amounts should be applied:

Agricultural limestone, 2 tons per acre or 100 lbs. per 1,000 square feet.

Nitrogen (N), 50 lbs. per acre or 1.1 lbs. per 1,000 square feet.

Phosphate (P2O5), 100 lbs. per acre or 2.2 lbs. per 1,000 square feet.

Potash (K2O), 100 lbs. per acre or 2.2 lbs. per 1,000 square feet.

(Note: This is the equivalent of 500 lbs. per acre of 10-20-20 fertilizer or 1,000 lbs. per acre 5-10-10).

B. Seed should be spread uniformly by the method most appropriate for the site. Methods include broadcasting and hydroseeding as follows:

1. Broadcasting: Sow seed using mechanical spreader at a rate of 4 lbs./1,000 square feet. Distribute seed evenly over entire area by sowing equal quantity in tow directions at right angles to each other. Rake seed lightly into top 1/8" of topsoil, roll lightly and water with a fine spray.

2. Hydroseeding: Mix specified seed, fertilize and pulverize mulch in water, using equipment specifically designed for hydroseed application. Continue mixing until uniformly blended into homogenous slurry suitable for hydraulic application. Apply slurry uniformly to all areas to be seeded. Rate of application as required to obtain specified seed sowing rate.

3.04 MULCHING

A. Mulch materials shall be spread uniformly by hand or machine at a rate of two 50 lb. bales per 1,000 square feet.

B. Organic Mulch Anchoring - Straw or hay mulch must be anchored immediately after spreading to prevent wind blowing.

3.05 MAINTENANCE

A. The maintenance period shall begin immediately after seeding and shall continue until acceptance.

B. All mulches must be inspected periodically, in particular after rainstorms, to check for rill erosion. Where erosion is observed, additional mulch shall be applied. Net should be inspected after rainstorms for dislocation or failure. If washouts or breakage occur, reinstall net as necessary after repairing damage to the slope. Inspections should take place until grasses are firmly established. Grasses shall not be considered established until a ground cover is achieved which is mature enough to control soil erosion and to survive severe weather conditions. Where mulch is used in conjunction with ornamental plantings, inspect periodically throughout the year to determine if mulch is maintaining coverage of the soil surface; repair as needed.

C. Seeding areas shall be protected and maintained by watering, reseeding, mowing, weeding, rolling, insect or disease control measures, re-fertilizing and repair of washouts which are necessary.

D. The Contractor shall maintain all seeded areas until full vegetation is established.

E. All seeded areas shall be kept free from weeds and debris, such as stones, cables, baling wire, and all slopes 4:1 or less (flatter) and level turf shall be mowed in the following manner:

- 1. When grass reaches a height of 4-6", mow to a height of 3".
- 2. At least two cuttings shall be made prior to final acceptance.

F. Following mowing, all permanent seeding grass areas (mowed and unmowed) shall receive a uniform application of slow release fertilizer hydraulically placed at the rate of 10 pounds per 100 square feet.

3.06 ACCEPTANCE

A. Inspection to determine acceptance of seeded areas will be made by the Landscape Architect, upon Contractor's written request. 1. Provide notification at least ten (10) working days before requested inspection date.

B. Seeded areas will be acceptable provided all installation and maintenance requirements have been complied with and a healthy uniform lawn is established.

C. Upon acceptance, the Owner will assume maintenance.

3.07 WARRANTY

A. All seeded areas will be warranted for a period of twelve months from date of Owner's acceptance. Should any seeded areas fail to maintain full vegetation, failed areas will be refurbished until this specification is achieved at the cost of the Contractor.

SITE ENGINEER:				
CIVIL ENGINEERING ASSOCIATES, INC. 10 MANSFIELD VIEW LANE, SOUTH BURLINGTON, VT 05403 P: 802-864-2323 FAX: 802-864-2271 web: www.cea-vt.com				
COPYRIGHT © 2019 – ALI DRAWN				
SAL CHECKED				
DSM				
APPROVED DSM				
CLIENT:				
IDEI	AND			
	MENT, LLC			
	RIAL AVENUE ERMONT 05403			
PROJECT:				
SUNDE	RLAND			
FAI	RMS			
COMN	<i>IUNITY</i>			
SEVEDAI	NCE ROAD			
	ESTER, VT			
	DEVICION			
DATE CHECKED	REVISION			
ESPC				
NARRATIVE				
DATE	DRAWING NUMBER			
11/01/2019 scale	_			
AS SHOWN	C6.13			
proj. no. 14134				

PROJECT COORDINATION

PART 1 – GENERAL

- 1.01 MEETINGS & PROJECT ACCESS
- A. The Owner shall be notified five (5) days prior to commencement of Work by the Contractor.
- B. The Contractor will coordinate with the Owner to arrange an on-site pre-construction meeting prior to commencement of any work. Job superintendents and subcontractors shall be included in this meeting.
- C. The Contractor will coordinate all phases of the Work, so as not to interfere with the normal work procedures in the area.
- D. The Contractor shall conduct his work in such a manner as to not interfere with or endanger work or traffic in areas adjacent to the construction area, except as permitted by the Owner. The Contractor shall so arrange his construction operations as to provide access for emergency vehicles and equipment to the work site at all times.
- 1.02 LABOR
- A. The Contractor and subcontractors will employ mechanics skilled in their respective trades.
- B. All labor will be performed in a neat and workmanlike manner.
- 1.03 PROTECTION OF PERSONS AND PROPERTY
- A. The Contractor shall be responsible for initiating, maintaining, and supervising all O.S.H.A. safety precautions in connection with the Work.
- B. Fire Protection: The Contractor shall take all necessary precautions to prevent fires adjacent to the Work and shall provide adequate facilities for extinguishing fires. The Contractor shall also prevent fires in project related buildings and shall prevent the spread of fires to areas outside the limits of the Work.
- C. Safety Precautions: Prior to commencement of Work, the Contractor shall be familiar with all safety regulations and practices applicable with construction operations. No additional payments will be made for equipment and procedures necessitated by these safety precautions.
- 1.04 CORRECTION OF WORK
- A. The Contractor shall promptly correct all Work rejected by the Owner as defective or as failing to conform to the Contract Documents. The Contractor shall bear all cost of correcting such rejected Work.
- 1.05 WEATHER CONDITIONS
- A. No Work shall be done when, in the opinion of the Owner, the weather is unsuitable. No concrete, earth backfill. embankment, or paving shall be placed upon frozen material. If there is delay or interruption in the Work due to weather conditions, the necessary precautions must be taken to bond new Work to old.
- B. Protection Against Water and Storm: The Contractor shall take all precautions to prevent damage to the Work by storms or by water entering the site of the Work directly or through the ground. In case of damage by storm or water, the Contractor, at his own expense, shall make repairs or replacements or rebuild such parts of the Work as the Engineer may require in order that the finished work may be completed as required by the Drawings and Specifications.
- 1.06 DISPOSAL OF DEBRIS
- A. All debris and excess materials, other than that which is authorized to be reused, become the property of the Contractor and shall be promptly removed from the property. The Contractor shall receive title to all debris and/or excess material. The Owner will not be responsible for any loss or damage to debris or excess material owned by the Contractor.
- 1.07 PROJECT LAYOUT
- A. The Contractor shall be responsible for providing all necessary survey staking.
- 1. Locate and protect control points before starting work on the site.
- 2. Preserve permanent reference points during progress of the Work.
- 3. Establish a minimum of two permanent benchmarks on the site, referenced to data established by survey control points.
- a. Record locations, with horizontal and vertical data, on Project Record Documents.
- 1.08 TESTING
- A. The Contractor is responsible for obtaining testing and inspection services.

SITE CLEARING

- PART 1 GENERAL
- 1.01 SUMMARY
- A. Section includes:
- 1. Remove surface debris.
- 2. Clear site of plant life and grass.
- 3. Remove trees and shrubs.
- 4. Remove root system of trees and shrubs.
- PART 2 PRODUCTS

Not used.

- PART 3 EXECUTION
- 3.01 PROTECTION

- A. Pro
- B. Pro ren
- C. Pro
- D. Use per
- E. Ma

3.02 CLE/

- A. Cle Wo
- B. Re stu ar CU.

3.03 REN

- A. Re
- B. Th
- 3.04 U1
- A. Co

SITE EAR

- PART 1 –
- 1.01 SUI
- A. Sec
 - 1.
- ٦
- 1.02 PR
- A. Pro
- B. Pro 1.03 SUE
- A. Tes m
- B. Fie
- C. Fiel pla
- D. St SD
- PART 2 -
- 2.01 ST FIN
- A. All

Α.	Protect utilities that remain from damage.	Percent by Weight Sieve Designation Passing Square Mesh Sieve
В.	Protect trees, plant growth, and features designated to remain as final landscaping.	1" 34" 100 100 100
C.	Protect bench marks and existing structures from damage or displacement.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
D.	Use means necessary to prevent dust becoming a nuisance to the public, to neighbors, and to other work being performed on or near the site.	2.05 DENSE GRADED CRUSHED STONE A. Dense Graded Crushed Stone should consist of a well graded
E.	' Maintain access to the site at all times.	crushed run stone and should meet the requirements for Vermont AOT Standard Specifications Item 704.06 Dense
.02	CLEARING	Graded Crushed Stone for Subbase and the gradation requirements shown in Table 704.06A of the Vermont AOT
Α.	Clear areas required for access to site and execution of Work.	Standard Specifications. <u>Sieve Designation</u> <u>Percent Finer by Weight</u>
В.	Remove trees and shrubs within marked areas. Remove stumps, roots and tap roots and other projections 1«" or greater in diameter to 2'-0" below the excavated surfaces in cut areas and 2'-0" below the exposed subgrade in fill areas.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
.03	REMOVAL	No. 4 $15 - 40$ No. 200 $0 - 6$
Α.	Remove debris, rock, and extracted plant life from site.	2.06 RECYCLED ASPHALT PAVEMENT (RAP) 1½" MINUS CRUSHED
Β.	The Contractor shall coordinate Work with the Engineer and Owner in establishing suitable areas within the property limits for depositing debris, rocks and extracted plant life. The Contractor shall be responsible for backfilling (capping) and grading all waste sites.	ASPHALT A. This material shall be free of Portland Cement and approved by the engineer prior to installation. This material shall not be mixed with gravel and shall meet the following grading requirements:
.04	UTILITIES	Percent by Weight
	Coordinate with utility companies and agencies as required.	Sieve Designation 2" 100 11/" 20 100
	EARTHWORK	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	1 – GENERAL SUMMARY	No. 200 $0 - 6$
01 A	Sommart Section includes:	2.07 SAND BORROW AND CUSHION
	 All excavation (unless covered in other sections of these specifications), removal and stockpile of topsoil, stabilization fabric, and other miscellaneous and appurtenant works. 	A. Sand Borrow shall consist of maerial reasonably free from silt, loam, clay, or arganic matter. It shall be obtained from approved sources and shall meet the requirements for Vermont AOT Standard Specifications and the gradation requirements shown in Table 703.03A of the Vermont AOT Standard Specifications.
	2. Site filling.	Sieve Designation Percent Finer by Weight
	3. Roadway structural sections.	2"
02	PROTECTION	$\frac{1}{2}$ " 70 - 100 No. 4 60 - 100
A.	Protect bench marks and existing structures.	No. 100 No. 200 0 - 8
B.	Protect above or below grade utilities which are to remain. SUBMITTALS	2.08 GEOTEXTILE
03		A. Subsurface Drainage Geotextile: Nonwoven needle-punched geotextile, manufactured for subsurface drainage applications,
	Testing laboratory reports indicating that material for backfill meets requirements of this Section.	made from polyolefins or polyesters; with elongation greater than 50 percent; complying with AASHTO M 288 and the
	Field density test reports of site fill in place. Field density test reports for roadway structural sections in	following, measured per test methods referenced: 1. Survivability: Class 3; AASHTO M 288.
0.	place.	2. Grab Tensile Strength: 120 lbf; ASTM D 4632.
D.	Stabilization Fabric: Submit copies of manufacturer's specifications and installation instructions.	3. Tear Strength: 50 lbf; ASTM D 4533.
ART	2 – PRODUCTS	4. Apparent Opening Size: No. 70 sieve, maximum; ASTM D 4751.
.01	STRUCTURAL FILL - CRUSHED GRAVEL (AOT SPEC. 704.05,	5. Permittivity: 1.7 per second, minimum; ASTM D 4491.
А.	FINE) All materials shall be secured from approved sources. This	6. UV Stability: 70 percent after 500 hours' exposure; ASTM D 4355.
	gravel shall consist of angular and round fragments of hard durable rock of uniform quality throughout, reasonably free from thin elongated pieces, soft or disintegrated stone, dirt, organic or other objectionable matter. This material shall	B. Separation Geotextile: Woven geotextile fabric, manufactured for separation applications, made from polyolefins or polyesters; with elongation less than 50 percent; complying
	meet the following grading requirements: Percent by Weight	with AASHTO M 288 and the following, measured per test methods referenced:
	Sieve Designation Passing Square Mesh Sieve 2" 100	1. Survivability: Class 3; AASHTO M 288.
	1 1/2" 90 - 100 No. 4 30 - 60	2. Grab Tensile Strength: 200 lbf; ASTM D 4632.
	No. 100 0 - 12 No. 200 0 - 6	 Sewn Seam Strength: 222 lbf; ASTM D 4632. Tear Strength: 75 lbf; ASTM D 4533.
.02	CRUSHED GRAVEL (AOT SPEC. 704.05, COARSE)	5. Puncture Strength: 90 lbf; ASTM D 4833.
Α.	This material shall meet the following grading requirements:	6. Apparent Opening Size: No. 40 sieve, maximum; ASTM D
	Percent by Weight Sieve Designation Passing Square Mesh Sieve	4751. 7. Permittivity: 0.02 per second, minimum; ASTM D 4491.
	4" $95 - 100$ No. 4 $25 - 50$ No. 100 $0 - 12$	8. UV Stability: 50 percent after 500 hours' exposure; ASTM D 4355.
	No. 200 0 — 6 At least 50% by mass (weight) of the material coarser than	9. Weight: 4.0 oz/yd² minimum.
	the No. 4 sieve shall have at least one fractured face.	PART 3 - EXECUTION
.03	COMPACTED FILL/GRANULAR BORROW	3.01 PREPARATION
A.	This material shall be free of shale, clay, friable material, debris, and organic matter, graded in accordance with ANSI/ASTM C136 within the following limits:	A. Identify required lines, levels, contours, and datum. B. Identify known below grade utilities. Stake and flag locations.
	Percent by Weight Sieve Designation Passing Square Mesh Sieve	C. Maintain and protect existing utilities remaining which pass through work area.
	3" 100 ¾" 75 – 100	D. Upon discovery of unknown utility or concealed conditions,
	No. 4 No. 100 20 - 100 0 - 20	discontinue affected work; notify Engineer.
C '	No. 200 $0 - 6$	3.02 EROSION CONTROL A. Erosion control must be installed prior to beginning any
.04	DRAINAGE COURSE (AOT SPEC. 704.16)	earthwork operations.
Α.	Rock for drainage applications shall be produced from natural gravels or crushed quarried rock and shall consist of clean, hard, sound, and durable material. It shall be obtained from approved sources and shall meet the following grading	

D CRUSHED STONE Crushed Stone shoul stone and should mee Standard Specification ed Stone for Subbase shown in Table 704.0 ccifications.	Percent by Weight n <u>g Square Mesh Sieve</u> 100 90 - 100 20 - 55 0 - 10 0 - 10
D CRUSHED STONE Crushed Stone shoul stone and should mee Standard Specification ed Stone for Subbase shown in Table 704.0 ccifications.	100 90 - 100 20 - 55 0 - 10
CRUSHED STONE Crushed Stone shoul stone and should mee Standard Specification ed Stone for Subbase shown in Table 704.0 ccifications.	20 - 55 0 - 10
d Crushed Stone shoul stone and should mee Standard Specification ed Stone for Subbase shown in Table 704.0 ecifications.	
stone and should mee Standard Specification ed Stone for Subbase shown in Table 704.0 ccifications.	d consist of a well araded
	et the requirements for ons Item 704.06 Dense
	<u>cent Finer by Weight</u>
4	$ \begin{array}{r} 100\\ 90 - 100\\ 75 - 100\\ 50 - 80\\ 30 - 60\\ 15 - 40 \end{array} $
4 200	15 — 40 0 — 6
'HALT PAVEMENT (RAP	P) 1½" MINUS CRUSHED
eer prior to installatior	land Cement and approved n. This material shall not eet the following grading
	Percent by Weight ing Square Mesh Sieve
	100 90 - 100
4 100	30 - 60 0 - 12
	0 - 6
AND CUSHION	ial reasonably free from
ay, or arganic matter. rces and shall meet t Standard Specification	It shall be obtained from the requirements for
gnation Perc	<u>cent Finer by Weight</u> 100
	90 — 100 70 — 100
4 100	60 - 100 0 - 20
200	0 - 8
anufactured for subsur olyolefins or polyesters	lonwoven needle—punched rface drainage applications, s; with elongation greater ASHTO M 288 and the ods referenced:
ty: Class 3; AASHTO	
sile Strength: 120 lbf	f; ASTM D 4632.
ngth: 50 lbf; ASTM [Opening Size: No. 70	D 4533. O sieve, maximum; ASTM D
tv: 1.7 per second. r	minimum; ASTM D 4491.
ity: 70 percent after	500 hours' exposure;
n applications, made f ith elongation less the	an 50 percent; complying
M 288 and the follow renced:	ving, measured per test
ty: Class 3; AASHTO	
sile Strength: 200 lb ⁻	
m Strength: 222 lbf;	
ngth: 75 lbf; ASTM [Strength: 90 lbf; AS	
<u> </u>	0 sieve, maximum; ASTM D
ty: 0.02 por coord	minimum. ASTM D 4401
	minimum; ASTM D 4491. 500 hours' exposure;
4.0 oz/yd² minimum.	
N	
	. Stake and flag locations.
<u> </u>	ies remaining which pass
protect existing utiliti	or concealed conditions, Ingineer.
protect existing utiliti area. ry of unknown utility o ffected work; notify E	prior to beginning any
protect existing utiliti area. ry of unknown utility of ffected work; notify En	
	protect existing utiliti area.

- 2.03 CO
- A. Thi

otect utilities that remain from damage.	Percent by Weight Sieve Designation Passing Square Mesh Sieve
otect trees, plant growth, and features designated to nain as final landscaping.	1" 100
otect bench marks and existing structures from damage or placement.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
e means necessary to prevent dust becoming a nuisance the public, to neighbors, and to other work being formed on or near the site.	2.05 DENSE GRADED CRUSHED STONE A. Dense Graded Crushed Stone should consist of a well graded
intain access to the site at all times. ARING	crushed run stone and should meet the requirements for Vermont AOT Standard Specifications Item 704.06 Dense Graded Crushed Stone for Subbase and the gradation requirements shown in Table 704.06A of the Vermont AOT
ar areas required for access to site and execution of rk.	Standard Specifications. <u>Sieve Designation</u> <u>Percent Finer by Weight</u>
move trees and shrubs within marked areas. Remove imps, roots and tap roots and other projections 1«" or eater in diameter to 2'-0" below the excavated surfaces in t areas and 2'-0" below the exposed subgrade in fill areas.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
OVAL	No. 4 $15 - 40$ No. 200 $0 - 6$
move debris, rock, and extracted plant life from site.	2.06 RECYCLED ASPHALT PAVEMENT (RAP) 1½" MINUS CRUSHED ASPHALT
e Contractor shall coordinate Work with the Engineer and ner in establishing suitable areas within the property limits depositing debris, rocks and extracted plant life. The ntractor shall be responsible for backfilling (capping) and ading all waste sites.	A. This material shall be free of Portland Cement and approved by the engineer prior to installation. This material shall not be mixed with gravel and shall meet the following grading requirements:
ILITIES	Percent by Weight
ordinate with utility companies and agencies as required.	Sieve Designation Passing Square Mesh Sieve 2" 100 1½" 90 - 100
GENERAL	No. 4 30 - 60 No. 100 0 - 12
MARY	No. 200 0 - 6
ction includes:	2.07 SAND BORROW AND CUSHION
All excavation (unless covered in other sections of these specifications), removal and stockpile of topsoil, stabilization fabric, and other miscellaneous and appurtenant works.	A. Sand Borrow shall consist of maerial reasonably free from silt, loam, clay, or arganic matter. It shall be obtained from approved sources and shall meet the requirements for Vermont AOT Standard Specifications and the gradation requirements shown in Table 703.03A of the Vermont AOT Standard Specifications.
Site filling.	Sieve Designation Percent Finer by Weight 2" 100
Roadway structural sections.	$1\frac{1}{2}^{"}$ 90 - 100 $\frac{1}{2}^{"}$ 70 - 100
OTECTION otect bench marks and existing structures.	No. 4 $60 - 100$ No. 100 $0 - 20$
otect above or below grade utilities which are to remain.	No. 200 0 - 8
BMITTALS	2.08 GEOTEXTILE
sting laboratory reports indicating that material for backfill eets requirements of this Section.	A. Subsurface Drainage Geotextile: Nonwoven needle-punched geotextile, manufactured for subsurface drainage applications, made from polyolefins or polyesters; with elongation greater than 50 percent; complying with AASHTO M 288 and the following, measured per test methods referenced:
ld density test reports of site fill in place. Id density test reports for roadway structural sections in	1. Survivability: Class 3; AASHTO M 288.
ce.	2. Grab Tensile Strength: 120 lbf; ASTM D 4632.
abilization Fabric: Submit copies of manufacturer's ecifications and installation instructions. PRODUCTS	3. Tear Strength: 50 lbf; ASTM D 4533. 4. Apparent Opening Size: No. 70 sieve, maximum; ASTM D
RUCTURAL FILL – CRUSHED GRAVEL (AOT SPEC. 704.05,	4751. 5. Permittivity: 1.7 per second, minimum; ASTM D 4491.
E)	6. UV Stability: 70 percent after 500 hours' exposure;
materials shall be secured from approved sources. This avel shall consist of angular and round fragments of hard rable rock of uniform quality throughout, reasonably free m thin elongated pieces, soft or disintegrated stone, dirt,	ASTM D 4355. B. Separation Geotextile: Woven geotextile fabric, manufactured for separation applications, made from polyolefins or
ganic or other objectionable matter. This material shall bet the following grading requirements:	polyesters; with elongation less than 50 percent; complying with AASHTO M 288 and the following, measured per test methods referenced:
Percent by Weight <u>Sieve Designation Passing Square Mesh Sieve</u> 2" 100	1. Survivability: Class 3; AASHTO M 288.
1 1/2" 90 - 100 No. 4 30 - 60	2. Grab Tensile Strength: 200 lbf; ASTM D 4632.
No. 100 0 - 12 No. 200 0 - 6	3. Sewn Seam Strength: 222 lbf; ASTM D 4632.
USHED GRAVEL (AOT SPEC. 704.05, COARSE)	4. Tear Strength: 75 lbf; ASTM D 4533. 5. Puncture Strength: 90 lbf; ASTM D 4833.
s material shall meet the following grading requirements:	6. Apparent Opening Size: No. 40 sieve, maximum; ASTM D
Percent by Weight Sieve Designation Passing Square Mesh Sieve	4751.
4" 95 - 100 No. 4 25 - 50 No. 100 0 - 12	 Permittivity: 0.02 per second, minimum; ASTM D 4491. UV Stability: 50 percent after 500 hours' exposure; ASTM D 4355.
No. 200 0 — 6 least 50% by mass (weight) of the material coarser than	9. Weight: 4.0 oz/yd² minimum.
e No. 4 sieve shall have at least one fractured face.	PART 3 - EXECUTION
MPACTED FILL/GRANULAR BORROW	3.01 PREPARATION
s material shall be free of shale, clay, friable material, oris, and organic matter, graded in accordance with SI/ASTM C136 within the following limits:	 A. Identify required lines, levels, contours, and datum. B. Identify known below grade utilities. Stake and flag locations.
Percent by Weight Sieve Designation Passing Square Mesh Sieve	C. Maintain and protect existing utilities remaining which pass through work area.
3" 100 34" 75 - 100 No. 4 20 - 100 No. 100 0 - 20	D. Upon discovery of unknown utility or concealed conditions, discontinue affected work; notify Engineer.
No. 200 0 - 6	3.02 EROSION CONTROL
AINAGE COURSE (AOT SPEC. 704.16)	 A. Erosion control must be installed prior to beginning any earthwork operations.
ck for drainage applications shall be produced from natural avels or crushed quarried rock and shall consist of clean, rd, sound, and durable material. It shall be obtained from proved sources and shall meet the following grading	

- 2.04 DR
- A. Roo hard, sound, and durable material. It shall be obtained from approved sources and shall meet the following grading requirements:

3.03 TOPSOIL EXCAVATION

- A. Excavate topsoil from areas to be excavated, re-landscap or regraded and stockpile in areas designated on site or directed by the Engineer.
- B. Maintain the stockpile in a manner which will not obstruct the natural flow of drainage.
- 1. Maintain stockpile free from debris and trash.
- 2. Keep the topsoil damp to prevent dust and drying out

3.04 SUBSOIL EXCAVATION

- A. Excavate subsoil from areas to be regraded in accordance with plans.
- B. Excavate subsoil required to accommodate site structures, construction operations, roads, and parking areas.
- C. Grade top perimeter of excavation to prevent surface wate from draining into excavation.
- D. Notify engineer of unexpected subsurface conditions and discontinue affected work in area until notified to resume work.
- E. Correct areas over-excavated by error as directed by the Engineer.

3.05 DITCHES

- A. Cut accurately to the cross-sections, grades, and elevatic shown.
- B. Maintain excavations free from detrimental quantities of leaves, sticks, trash, and other debris until completion of work.
- C. Dispose of excavated materials as shown on the drawings directed by the Engineer; except do not, in any case, dep materials less than three feet from the edge of a ditch.

3.06 ROADWAY EMBANKMENTS AND BERMS

- A. When embankments are to be made on a hillside, the slop of the original ground on which the embankments are to constructed shall be stepped and properly drained as the is constructed so that adverse movements of the slopes not occur.
- B. Any excavated rock, ledge, boulders, and stone, except wh required in the construction of other items or otherwise directed, shall be used in the construction of embankment to the extent of the project requirements and generally sh be placed so as to form the base of an embankment.
- C. Frozen material shall not be used in the construction of embankments, nor shall the embankments or successive layers of the embankments be placed upon frozen materic Placement of material other than rock shall stop when the sustained air temperature, below 32 dearees Fahrenheit. prohibits the obtaining of the required compaction. If the material is otherwise acceptable, it shall be stockpiled and reserved for future use when its condition is acceptable for use in embankments.
- D. When an embankment is to be constructed across a swarr muck, or areas of unstable soils, the unsuitable material be excavated to reach soils of adequate bearing capacity the embankment begun. Alternative methods, such as us of a stabilization fabric in place of excavation and backfill, may be utilized only after approval of same by the Engine
- E. Material being placed in embankments shall be placed in horizontal layers of uniform thickness across the full width the embankment. Stumps, trees, rubbish, and other unsuitable material shall not be placed in embankments.
- F. Embankment areas shall be placed in eight-inch maximum lifts. Effective spreading equipment shall be used on each layer to obtain uniform thickness prior to compaction. Ec layer shall be kept crowned to shed water to the outside edge of embankment and continuous leveling and manipulating will be required to assure uniform density. entire area of each layer shall be uniformly compacted to least the required minimum density by use of compaction equipment consisting of rollers, compactors, or a combina thereof. Earth-moving and other equipment not specifically manufactured for compaction purposes will not be conside as compaction equipment.
- G. All fill material shall be compacted at a moisture content suitable for obtaining the required density. In no case she the moisture content in each layer under construction be more than three percent above the optimum moisture content and shall be less than that quantity that will caus the embankment to become unstable during compaction. Sponginess, shoving, or other displacement under heavy equipment shall be considered evidence for an engineering determination of lack of stability under this requirement, further placement of material in the area affected shall be stopped or retarded to allow the material to stabilize.
- H. When the moisture content of the material in the layer ur construction is less than the amount necessary to obtain satisfactory compaction by mechanical compaction method water shall be added by pressure distributors or other approved equipment. Water may also be added in excavati or borrow pits. The water shall be uniformly and thorough incorporated into the soil by disc, harrowing, blading, or b other approved methods. This manipulation may be omitte for sands and gravel. When the moisture content of the material is in excess of three percent above optimum moisture content, dry material shall be thoroughly incorporated into the wet material, or the wet material sh be aerated by disking, harrowing, blading, rotary mixing, or other approved methods; or compaction of the layer of we material shall be deferred until the layer has dried to the required moisture content by evaporation.

	3.07	COMPACTION REQUIREMENTS	SITE ENGINEER:	٨
ed		All backfills and fills shall be compacted in even lifts (12"	C	
as	д.	maximum) to attain the required densities as follows:		E A
	Locatio	Modified Proctor ASTM D-1557		
			CIVIL ENGINEERING	ASSOCIATES, INC.
		ade (8") and Gravel for 95% and Parking Lots	· · · · · · · · · · · · · · · · · · ·	DUTH BURLINGTON, VT 05403 4-2271 web: www.cea-vt.com
	Genera	al Embankments 90%		
	<u>UTILIT</u>	TY TRENCHING AND BACKFILLING	COPYRIGHT © 2019 – ALL DRAWN	RIGHTS RESERVED
;	PART	1 – GENERAL	MAB	
	1.01	SUMMARY	CHECKED	
	Α.	Section includes:	DSM	
er		1. Trench, backfill, and compact as specified herein and as	APPROVED DSM	
		needed for installation of underground utilities.		
	1.02	QUALITY ASSURANCE	CLIENT:	
	Α.	Use adequate numbers of skilled workmen who are thoroughly trained and experienced in the necessary crafts and who are completely familiar with the specified requirements and the methods needed for proper performance of the work of this section.		.AND MENT, LLC
ons	В.	Use equipment adequate in size, capacity, and numbers to accomplish the work in a timely manner.		
	C.	Comply with all requirements of governmental agencies having		RIAL AVENUE ERMONT 05403
the		jurisdiction.		
or		2 - PRODUCTS		
osit	2.01	SOIL MATERIALS	PROJECT:	
	Α.	Fill and backfill materials:	1100101.	
be		 Provide backfill materials free from organic matter and deleterious substances, containing no rocks or lumps over 6" in greatest dimension. 		RLAND
fill do		Fill material is subject to the approval of the Engineer, and is that material removed from excavations or		
		imported from off-site borrow areas, predominantly granular, non-expansive soil free from roots and other		RMS
nere		deleterious matter.	COMN	IUNITY
ts hall		 Do not permit rocks having a dimension greater than 2" within 2' of the outside of pipe. 		
		4. Cohesionless material used for backfill: Provide sand free from organic material and other foreign matter, and as		
al. e		approved by the Engineer.		ICE ROAD ESTER, VT
2		3 - EXECUTION		,
d or	3.01	PROCEDURES		
	А.	Existing Utilities:		
np, shall and e		 Unless shown to be removed, protect active utility lines shown on the drawings or otherwise made known to the Contractor prior to trenching. If damaged, repair or replace at no additional cost to the Owner. 		
, eer. n of		 When existing underground utilities, which are not scheduled for removal or abandonment, are encountered in the excavation, they shall be adequately supported and protected from damage. Any damage to utilities shall be repaired promptly at no additional cost to the Owner. 		
ו ר		 If the service is interrupted as a result of work under this section, immediately restore service by repairing the damaged utility at no additional cost to the Owner. 		
ich The at		 If existing utilities are found to interfere with the permanent facilities being constructed under this section, immediately notify the Engineer and secure his instructions. 		
tion		5. Do not proceed with permanent relocation of utilities until written instructions are received from the Engineer.		
y red	D	Protection of persons and property:		
	.ت	 Barricade open holes and depressions occurring as part 	DATE CHECKED	REVISION
all		of the work, and post warning lights on property adjacent to or with public access.		
se		Operate warning lights during hours from dusk to dawn each day and as otherwise required.		
and e		 Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, washout, and other hazards created by operations under this section. 		
nder	C.	Dewatering: The Contractor, at all times, shall conduct his		
	0.	operations so as to prevent the accumulation of water, ice, and snow in excavations or in the vicinity of excavated areas,		
ls, on		and to prevent water from interfering with the progress of quality of the work. Under no conditions shall water be		
hly		allowed to rise in open trenches after pipe has been placed.	SITE	
y .ed	D.	Accumulated water, ice, and snow shall be promptly removed and disposed of by pumping or other approved means. Disposal shall be carried out in a manner which will not	SPECIFIC	ATIONS
all r by et		create a hazard to public health, nor cause injury to public or private property, work completed or in progress, or public streets, nor cause any interference in the use of streets and road by the public. Pipes under construction shall not be used for drainage of excavations.		
	E.	Maintain access to adjacent areas at all time.		
	3.02	TRENCHING	DATE	DRAWING NUMBER
		Care shall be exercised by the Contractor to avoid disrupting the operation of existing facilities without prior written approval of the Engineer.	11/01/2019 scale	
	B.	Provide sheeting and shoring necessary for protection of the work and for the safety of personnel.	NONE	C7.0
		work and for the safety of personnel.	proj. no. 14134	

- 1. Sheeting and bracing required for trenches shall be removed to the elevation of the pipe, but no sheeting will be allowed to be pulled, removed, or disturbed below the pipe.
- C. A trench shall be excavated to the required depth and to a width sufficient to allow for joining of the pipe and compaction of the bedding and backfill material under and around the pipe. Where feasible, trench walls shall be vertical.
- D. The completed trench bottom shall be firm for its full length and width.
- E. If indicated on the plans or directed by the Engineer, poor foundation material encountered below the normal grade of the pipe bed shall be removed and replaced with granular backfill.
- F. Where pipes are to be placed in embankment fill, the excavation shall be made after the embankment has been completed to a height of 3 feet plus the diameter of the pipe above the designed grade of the pipe.
- G. Excavating for appurtenances:
- 1. Excavate for manholes and similar structures to a distance sufficient to leave at least 12" clear between outer surfaces and the embankment or shoring that may be used to hold and protect the banks.
- 2. Over-depth excavation beyond such appurtenances that has not been directed will be considered unauthorized. Fill with sand, gravel, or lean concrete as directed by the Engineer, and at no additional cost to the Owner.
- H. Excavation shall not interfere with normal 45° bearing splay of foundations.
- I. All trenching shall be in accordance with the latest OSHA requirements.
- J. Where utility runs traverse public property or are subject to governmental or utility company jurisdiction, provide depth, bedding, cover, and other requirements as set forth by legally constituted authority having jurisdiction, but in no case less than the depth shown in the Contract Documents.
- K. Where trenching occurs in existing lawns, remove turf in sections and keep damp. Replace turf upon completion of the backfilling.

3.03 BEDDING

A. Pipe Bedding Area: Prior to laying pipe, bedding material shall be placed to the limits of the excavation and to a depth beneath the pipe as specified. This material shall be either sand, gravel, or crushed stone and shall not contain large lumps and stones over one inch in diameter. As the pipe is laid, bedding material shall be extended to 6" above the pipe and leveled along the width of the trench.

3.04 BACKFILLING

- A. Backfilling shall not be done in freezing weather, with frozen materials, or when materials already placed are frozen.
- B. Unless otherwise specified or indicated on the plans, material used for backfilling trenches above the bedding area shall be suitable material which was removed during excavation or obtained from borrow and when compacted shall make a dense stable fill. The material shall not contain vegetation, porous matter, masses of roots, individual roots more than 18 inches long or $\frac{1}{2}$ inch thick, or stones greater than 50 pounds or larger than six inches in the widest dimension.
- C. If additional material is required, it shall be furnished from approved sources.
- D. Backfill material shall be evenly spread and compacted in lifts not more than 12 inches thick or as approved by the Engineer. Previously placed or new materials shall be moistened by sprinkling, if required, to ensure proper bond and compaction.
- E. Reopen trenches which have been improperly backfilled, to a depth as required for proper compaction. Refill and compact as specified, or otherwise correct to the approval of the Engineer.
- F. Should any of the work be so enclosed or covered up before it has been approved, uncover all such work and, after approvals have been made, refill and compact as specified, all at no additional cost to the Owner.
- G. Take special care in backfilling and bedding operations to not damage pipe and pipe coatings.
- H. No compacting shall be done when the material is too wet to be compacted properly. At such times the work shall be suspended until the previously placed and new materials have dried out sufficiently to permit proper compaction, or such other precautions are taken as may be necessary to obtain proper compaction.
- I. Backfill material shall be compacted to the following percentages of maximum dry density and the in-place moisture content shall not be more than 2% above the optimum moisture content, as determined by Modified Proctor ASTM D1557.
 - 1. Around all structures, under roadway paving, shoulder and embankments — 95%.
 - 2. All other areas 90%.

BITUMINOUS CONCRETE PAVING

- PART 1 GENERAL
- 1.01 SUMMARY

A. Section includes:

- 1. Base Courses
- 2. Leveling Courses
- 3. Finish Course
- B. General: This work shall consist of one or more courses of

bituminous mixture, constructed on a prepared accordance with these Specifications and the being placed, and in conformity with the lines, thicknesses and typical cross sections shown o established by the Engineer.

1.02 QUALITY ASSURANCE

- A. Use adequate numbers of skilled workers who trained and experienced in the necessary crafts completely familiar with the specified requireme methods needed for proper performance of the Section.
- B. All materials and installation shall be in accord Asphalt Institute Manual (MS-4) and the VAOT Specifications, (Latest Edition).
- C. Mixing Plant: Conform to State of Vermont S

D. Obtain materials from same source throughout

1.03 PROJECT CONDITIONS

Α.	and May 1. Material shal subbase is wet or when	II not be placed between No I not be placed when the g the air temperature at the way from artificial heat is a
	Air Temperature	Pavement

Degrees Fahrenheit	Compacted Dept
40 Degrees or below	1 1/4" or Great

- 50 Degrees or below Less than
- PART 2 PRODUCTS

2.01 MATERIALS

- A. Materials shall be combined and graded to mee as defined in the VAOT Standard Specifications for bituminous concrete.
- B. Gradation: Materials shall be combined and gr composition limits specified in VAOT Standard Section 406.03, for the base course and finish specifically shown on the Plans, all
- 1. Bituminous concrete pavement shall be des conformance with the design criteria for he bituminous concrete pavement. (75 blows/s
- 2. All Asphalt Cement used in the bituminous pavement shall be PG 58-28 (or VTrans ap unless otherwise noted.
- C. Thickness of paving for drives and parking lots shown on the plans, consisting of base course course.
- D. For pavement reconstruction areas due to tren depth of each course shall be increased by 1/ reconstruction caused by trench reopening due placement or non-approved placement shall be no additional cost to the Owner.
- PART 3 EXECUTION
- 3.01 INSTALLATION
- A. Install in accordance with VAOT Standard Spec Section 406.
- 3.02 EXAMINATION
- A. Verify that compacted granular base is dry and support paving and imposed loads.
- B. Verify gradients and elevations of base are cor
- 3.03 PREPARATION
- A. Matching Surfaces: When a new pavement is existing bituminous pavement for a roadway or Contractor shall vertically smooth cut the exist over the existing gravel base. The smooth cut thoroughly cleaned and coated with Emulsified just prior to paving.
- 3.04 PREPARATION TACK COAT
- A. When the bottom course of bituminous concret left over the winter, or paving is to be made bituminous concrete pavement, the existing sur cleaned and Emulsified Asphalt applied before is applied.
- B. Also apply to contact surfaces of curbs.
- C. Coat surfaces of manhole and catch basin fran prevent bond with asphalt pavement. Do not these surfaces.
- 3.05 PLACING ASPHALT PAVEMENT
- A. Place to compacted thickness identified on the B. Compact pavement by rolling. Do not displace
- pavement from position. Hand compact in are to rolling equipment.
- C. Develop rolling with consecutive passes to achi smooth finish, without roller marks.
- 3.06 JOINTS
- A. Joints between old and new pavements or between successive day's work shall be made so as to insure a thorough and continuous bond between the old and new mixtures. Whenever the spreading process is interrupted long enough for the mixture to attain its initial stability, the paver shall be removed from the mat and a joint constructed.
- B. Butt joints shall be formed by cutting the pavement in a vertical plane at right angles to the centerline where the pavement has a true surface as determined by the use of a straight-edge. The butt joint shall be thoroughly coated with Emulsified Asphalt, Type RS-1, just prior to depositing the paving mixtures.

l foundation in type of surface grades, on the plans or	C. Longitudinal joints that have become cold shall be coated with Emulsified Asphalt, Type RS—1, before the adjacent mat is placed. If they have been exposed to traffic, they shall be cut back to a clean vertical edge prior to painting with the emulsion.	distress in the buildings and verification of quality and quantity of water in all individual water systems. 2. Verify site conditions and note all subsurface irregularitie which may affect any work requiring blasting.
are thoroughly s and who are ents and the	D. Unless otherwise directed, longitudinal joints shall be offset at least 6" from any joint in the lower courses of pavement. Transverse joints shall not be constructed nearer than one foot from the transverse joints constructed in lower courses.	 Identify required lines, levels, contours and datum. Obtain a seismic survey prior to rock excavation to determine maximum charges that can be used without damaging adjacent properties, other work or existing
e work of this dance with The Standard	 3.07 TOLERANCES A. The surface will be tested by the Engineer using a 16 foot straight-edge at selected locations parallel with the contenting. Any variations avagading 3/16 of an inch between 	utilities. 3.2 PREPARATION A. Protect structures, utilities, sidewalks, pavements, and other
Standards.	centerline. Any variations exceeding 3/16 of an inch between any two contacts shall be satisfactorily eliminated. A 10 foot straight—edge may be used on a vertical curve. The straight—edges shall be provided by the Contractor.	facilities from damage caused by settlement, lateral movement, undermining, and other hazards created by blasting operations.
:. een November 1	 B. Scheduled Compacted Thickness: Within 1/4 inch. C. Variation from True Elevation: Within 1/2 inch. 	B. When ledge rock or boulders are encountered, the material shall be uncovered and the Contractor shall take cross-sections of the ledge rock surface. If the Contractor uncovers ledge but fails to cross section the undisturbed material, the Contractor shall have no right-of-claim to any
the granular t the paving t is as follows:	3.08 FIELD QUALITY CONTROL A. Permit no vehicular traffic on surfaces until thoroughly cool and hard.	classification other than that allowed by the Owner. 3.3 EXPLOSIVES
d Depth	3.09 REPAIR OF SUBSIDENCE A. Settlement — Should any pavement settle within one year of	A. Explosives: Obtain written permission and all necessary permits from authorities having jurisdiction (local, state and federal) before bringing explosives to Project site or using
Greater 1 1/4"	completion of the Contract, such pavement shall be repaired at the Contractor's expense. If the Contractor fails to make such repairs promptly upon receipt of notice to do so from the Owner, then the Owner may make such repairs as	explosives on Project site. 1. Perform blasting without damaging adjacent structures, property, or site improvements.
	necessary and the Contractor shall pay the Owner for all costs incurred in making such repairs. ROCK AND BOULDER EXCAVATION	 Perform blasting without weakening the bearing capacity of rock subgrade and with the least-practicable disturbance to rock to remain.
et the criteria s, Division 700	PART 1 – GENERAL	3.4 EXCAVATION, GENERAL
raded to meet Specification, 1 course. Unless	1.1 SUMMARYA. This Section includes the following:	A. Rock excavation includes removal and disposal of rock. Remove rock to lines and subgrade elevations indicated to permit installation of permanent construction.
signed in	1. Work included: Furnish all labor and equipment required for excavation, disposal and replacement of rock and boulders.	3.5 UNAUTHORIZED EXCAVATION A. Fill unauthorized excavations under construction.
eavy duty side) concrete pproved mix)	a. All boulders within the range boundaries shown on the site plans to be removed shall be included as part of the Contractors mass rock removal.	 If rock below grade is shattered by blasting caused by holes drilled too deep, or too heavy charges of explosive or any other circumstance due to blasting, and if such shattered rock does not provide suitable foundation, the rock shall be removed and the excavation refilled with
s shall be as	1.2 SUBMITTALS	screened gravel at the expense of the Contractor.
and finish	A. Blasting Plan: For record purposes; approved by authorities having jurisdiction.	DRAINAGE
nching, the	B. Seismic Survey Report: For record purposes; from seismic survey agency.	PART 1 – GENERAL
'2". Pavement to improper e performed at	C. Preexcavation Photographs or Videotape: Show existing conditions of adjoining construction and site improvements, including finish surfaces, that might be misconstrued as damage caused by earthwork operations. Submit before	1.01 SUMMARYA. Section includes:1. Culvert pipe and appurtenances.
	earthwork begins. 1.3 QUALITY ASSURANCE	2. Stone fill.
ifications,	A. Blasting: Comply with applicable requirements in NFPA 495,	3. Drainage Structures
	"Explosive Materials Code," and prepare a blasting plan reporting the following: 1. Types of explosive and sizes of charge to be used in	 1.02 REFERENCES A. Vermont Agency of Transportation Standard Specifications, Latest Edition.
d ready to	each area of rock removal, types of blasting mats, sequence of blasting operations, and procedures that will prevent damage to site improvements and structures on	1.03 SUBMITTALS
rrect.	Project site and adjacent properties.	A. Manufacturer's technical data for:
to match an	 Seismographic monitoring during blasting operations. Explosive Firm: The company specializing in explosives 	 Pipe and appurtenances. Structures.
r trench, the ting pavement,	for disintegration of rock with a minimum of five (5) years documented experience.	PART 2 - PRODUCTS
t shall be Asphalt, RS-1,	B. Seismic Survey Agency: An independent testing agency, acceptable to authorities having jurisdiction, experienced in seismic surveys and blasting procedures to perform the	2.01 GENERAL REQUIREMENTSA. Furnish ells, tees, reducing tees, wyes, couplings, increasers,
te pavement is over an existing rface shall be the next course	following services: 1. Report types of explosive and sizes of charge to be used in each area of rock removal, types of blasting mats, sequence of blasting operations, and procedures that will	crosses, transitions and end caps of the same type and class of material as the conduit, or of material having equa or superior physical and chemical properties as acceptable to the Engineer.
	prevent damage to site improvements and structures on Project site and adjacent properties.	B. All culverts and storm drains shall meet the requirements of Section 601 of the Standard Specifications.
mes with oil to	2. Seismographic monitoring during blasting operations.	2.02 DRAINAGE PIPE & PERFORATED PIPE
tack coat	 Seismic Survey Firm: The company specializing in seismic surveys with a minimum of five (5) years documented experience. 	 A. Culvert / Drainage Pipe 1. Corrugated Polyethylene pipe and fittings (smooth interio meeting the requirements of AASHTO M-294 and M-252
e nlans	1.4 SCHEDULING	2. for drainage piping installed by directional boring
e plans. e or extrude eas inaccessible	 A. Drilling operations shall be conducted Monday through Friday, from 7:00 A.M. to 4:00 P.M. B. Blasting operations shall be conducted Monday through Friday. 	techniques, use PE 3408 high density polyethylene pipe meeting ASTM D3350 Standard (SDR 11 or better)
	B. Blasting operations shall be conducted Monday through Friday, from 8:00 A.M. to 4:00 P.M.	2.03 CONCRETE STRUCTURESA. ASTM C478, sized as indicated.
ieve even and	C. Notification: Notify adjacent property owners and residents (within 1,500') a minimum of seven (7) days in advance of all anticipated blasting operations. Explain blasting and	2.04 METAL ACCESSORIES

PART 2 - PRODUCTS (Not Applicable) PART 3 - EXECUTION

3.1 EXAMINATION

A. Pre-Blast Survey and Site Examination:

seismic operation and schedule.

- 1. Conduct a pre-blast survey on all adjacent buildings and individual water systems within a distance of 1,500 feet. Also include pre-blast surveys for up to six (6) residences along Range Road in Underhill Center. The survey shall include pictures and notes of all signs of
- A. Stone for stone fill shall be approved, hard, blasted angular rock other than serpentine rock containing the fibrous variet chrysotile (asbestos). The least dimension of the stone sha be greater than 1/3 of the longest dimension. The stone shall be reasonably well graded from the smallest to the maximum size stone specified so as to form a compact mass when in place.

A. Manhole frames and covers:

1. Ductile Cast Iron.

2.05 STONE FILL

1. Type 1 - The longest dimension of the stone shall vary

all individual water systems.		from 1 inch to 12 inches, and at least 50 percent of the volume of the stone in place shall have a dimension of 4 inches.	SITE ENGINEER:	
y work requiring blasting.		 Type II — The longest dimension of the stone shall vary from 2 inches to 36 inches, and at least 50 percent of the volume of the stone in place shall have a least dimension of 12 inches. 		A
 Inc. and a status of a duality and a duality of a duality of a status of a duality of a		CIVIL ENGINEERING A 10 MANSFIELD VIEW LANE, SC P: 802-864-2323 FAX: 802-864 COPYRIGHT © 2019 – ALL	UTH BURLINGTON, VT 05403 1-2271 web: www.cea-vt.com	
aused by settlement, lateral		from 3 inches to 60 inches, and at least 50 percent of the volume of the stone in place shall have a least	MAB CHECKED	
dge rock surface. If the Contractor to cross section the undisturbed shall have no right—of—claim to any		Examine the areas and conditions under which storm sewer system work is to be installed and notify the Contractor in writing of conditions detrimental to the proper and timely completion of the work. Do not proceed with the work until	CLIENT:	AND
n permission and all necessary	3.02	,		MENT, LLC
5, ,	A.	for removal or abandonment, are encountered in the		
5 5 5		from damage. Any damage to utilities shall be repaired		RIAL AVENUE ERMONT 05403
			WILLISTON, VI	
to remain.	Α.	· · · ·		
d subgrade elevations indicated to		the plans. Where required, end sections shall be placed and backfilled to prevent undermining.	PROJECT:	
	C.	damage drainage structures or impede consistent backfilling	SUNDE	RLAND
	3.04	INSTALLATION OF PIPE	FAF	RMS
b, or too heavy charges of explosives, stance due to blasting, and if such not provide suitable foundation, the d and the excavation refilled with	Α.	and no pipe or fittings shall be laid which are known to be defective. If any defective piece is discovered after laying, it shall be removed and replaced at the Contractor's expense. All pipes and fittings shall be cleaned before they are laid	COMN	IUNITY
	Β.	indicated on the drawings or given by the Engineer. Each pipe shall be laid as to form a close joint with the next adjoining pipe and to bring the inverts continuously to the		ICE ROAD ESTER, VT
urtenances.	C.	shall provide for the temporary diversion of water to permit		
	D.	Where the pipe is to be laid below the existing ground line, a trench shall be excavated to the required depth and to a width sufficient to allow for joining of the pipe and compaction of the bedding and backfill material under and		
sportation Standard Specifications,	E.	The completed trench bottom shall be firm for its full length		
	F.	unsuitable foundation material encountered below the normal grade of the pipe bed shall be removed and replaced with		
ces.	G.			
	Н.	pipe shall be closed with temporary watertight plugs. If water is in the trench when work is resumed, the plug shall not be removed until all danger of water entering the pipe is		
conduit, or of material having equal chemical properties as	3.05		DATE CHECKED	REVISION
rains shall meet the requirements of	A.	Precast concrete structures:		
•				
		3. Provide rubber joint gasket complying with ASTM C443.		
			SITE	
licated.	A.	Section includes:	SPECIFICA	
ers:	PART	2. Concrete Sidewalks 2 — PRODUCTS		
	2.01	CONCRETE		
be approved, hard, blasted angular ne rock containing the fibrous variety he least dimension of the stone shall	А.	The concrete shall have a minimum compressive strength of 4,000 psi at 28 days and shall conform to the requirements of Cast—in—Place Concrete.	date 11/01/2019	DRAWING NUMBER
the longest dimension. The stone fill graded from the smallest to the cified so as to form a compact	2.02 A.	ADMIXTURES Air—entraining admixture shall meet or exceed ASTM C260.	SCALE	
	,	Air content shall range from minimum of 5% to 7%.	NONE proj. no.	C7.1
t dimension of the stone shall vary	2.03	EXPANSION JOINT MATERIAL	E EKUI NO	

A. Expansion joint material shall be premolded bituminous filler conforming to ASTM D994.

PART 3 - EXECUTION

3.01 CONCRETE CURBS

- A. Excavation shall be made to the required depth and the base material upon which the curb is to be set shall be compacted to a firm, even surface. All soft and unsuitable material shall be removed and replaced with suitable material which shall be thoroughly compacted.
- B. Installation: The curb shall be set so that the front top line is in close conformity to the line and arade required. All space under the curbing shall be filled and thoroughly tamped with material meeting the requirements of the material for the bed course.
- C. Concrete Mixing and Placing: Compaction of concrete placed in the forms shall be by spading or other approved methods. Forms shall be left in place for 24 hours or until the concrete has set sufficiently so that they can be removed without injury to the curbing. Upon removal of the forms, the curb shall be immediately rubbed down to a smooth and uniform surface but no plastering will be permitted. For this work, competent and skillful finishers shall be employed.
- D. Sections: Curbing shall be constructed in sections having a uniform length of ten feet, unless otherwise ordered. Sections shall be separated by open joints 1/8 inch wide except at expansion joints.
- E. Expansion Joints: Expansion joints shall be formed at the intervals shown on the plans using a pre-formed expansion joint filler having a thickness of 1/4 inch cut to conform to the cross-section of the curb. They shall be constructed at 20 foot intervals or as directed by the Engineer. When the curb is constructed adjacent to or on concrete pavement, expansion joints shall be located opposite or at expansion joints in the pavement.
- F. Backfilling: After the concrete has set sufficiently, the spaces in front and back of the curb shall be filled to the required elevation with layers of not more than six inches of the same material as the bedding and thoroughly tamped.
- G. The Contractor shall protect the curb and keep it in alignment until the completion of the contract. Each curb which is damaged at any time previous to final acceptance of the work shall be removed and replaced with satisfactory curb at the Contractor's expense.
- H. Anti-spalling compound: When the initial curbing period is over (approximately 28 days after placement), all exposed surfaces shall receive two (2) coats of anti-spalling compound. The surfaces shall be cleaned, and then the compound shall be applied; the first coat at a rate of .025 gallons per square yard, and the second at a rate of .015 gallons per square yard. Anti-spalling compound shall only be applied when the air temperature is above 50 degrees Fahrenheit.
- 3.02 GRANITE CURBING
- A. Sloped granite curbing shall be hard, durable, reasonably uniform in appearance and free from weakening seams. Surfaces shall be as follows:
- Top: 6" wide, sawn true plane.
- Front Face: Smooth guarry split, right angle top (No drill holes showing in top 10")
- Back Face Exposed: Plane parallel with front face, straight split to 1 1/2" below surface.
- End Face Exposed: Square planes on top and face.
- Joints Exposed: Maximum 1" and pointed with mortar. Exposed faces shall be finished with a jointer. Remove all excess mortar from exposed faces.
- Length: Minimum length 3'.
- Provide curved curbing to conform to radii indicated on the Contract Plans.
- 3.03 CONCRETE SIDEWALKS
- A. Excavation and Foundation: Excavation shall be made to the required depth and to a width that will permit placing of bed course material and the installation and bracing of the forms. Bed course material shall be placed to the depth and section shown on the plans. When the layer required exceeds six inches, two layers of approximately equal depth shall be placed and each layer thoroughly compacted so that it is hard and unyielding. The wetting of bed course material may be required to obtain the compaction.
- B. Finishing: The surface shall be finished with a wooden float. No plastering will be permitted. The edges shall be rounded with an edger having a radius of 1/4 inch. The surface of the sidewalk, after the floating and screeding process is completed, shall be finished with a broom of a type approved by the Engineer, drawn over the surface parallel to the transverse joints. Special texturing on sidewalk ramps shall be installed in accordance with construction plan details.
- C. Joints: Unless otherwise indicated on the plans or directed by the Engineer, expansion joints shall not be used in the sidewalk. Expansion joints shall be formed around all appurtenances such as manholes, utility poles and other obstructions extending into and through the sidewalk. Pre-formed joint filler 1/4 inch thick shall be installed in these joints. Expansion joint filler of the thickness indicated shall be installed between concrete sidewalks and any fixed structure such as a building or bridge. This expansion joint material shall extend for the full depth of the walk. Between the expansion joints, the sidewalk shall be divided at intervals of 5 feet by dummy joints formed by sawcutting or other acceptable means as directed to provide grooves approximately 1/16 inch wide and at least 1/3 of the depth.

When the sidewalk is constructed next to a concrete curb expansion, joint material shall be placed between sidewalk and curb for the depth of the sidewalk.

D. Curing: During the curing period all traffic, both pedestrian and vehicular, shall be excluded. Vehicular traffic shall be

excluded for such additional time as the Engineer ma

E. Backfilling: Before the concrete has been opened to traffic, the space on each side of the sidewalk shall be backfilled to the required elevation with suitable material, firmly compacted and neatly graded.

SANITARY SEWER SYSTEMS

PART 1 – GENERAL

- 1.01 SUMMARY
- A. Section includes:
- 1. Gravity Sewer Pipe
- 2. Manhole Structures and Appurtenances
- 3. Pressure Sewer Pipe
- B. Related Sections:
- 1. Section 02225 Utility Trenching and Backfilling 1.02 SUBMITTALS
- A. Product Data: Submit published data from manufacturers of products and accessories specified, indicating compliance with requirements.
- 1.03 QUALITY ASSURANCE
- A. All sanitary sewer materials and construction of same shall be as shown on the Contract Plans and shall meet the requirements of the State of Vermont Agency of Natural Resources (Department of Environmental Conservation) and the Public Works Standards and Specifications of the local municipality.
- PART 2 PRODUCTS
- 2.01 GENERAL
- A. Furnish ells, tees, reducing tees, wyes, couplings, increasers, crosses, transitions and end caps of the same type and class of material as the conduit, or of material having equal or superior physical and chemical properties as acceptable to the Engineer to provide a complete and operable system.
- 2.02 PVC GRAVITY SANITARY SEWER PIPE
- A. PVC sewer pipe shall conform in all respects to the latest revision of ASTM Specifications D-3034 or F679, Type PSM Polyvinyl Chloride (PVC) Sewer Pipe and Fittings, SDR 35 pipe. All pipe and fittings shall be clearly marked as follows:
 - Manufacturer's Name and Trademark
 - Nominal Pipe Size (as shown on plans)
 - Material Designation 12454-C PVC
- Legend "Type PSM SDR 35 PVC Sewer Pipe" or "PS 46 PVC Sewer Pipe"
- Designation ASTM D-3034 or F679
- B. Joints shall be push-on type using elastomeric gaskets and shall conform to ASTM D-3212. The gaskets shall be factory installed. The pipe shall be furnished in nominal 13 foot lengths. Sufficient numbers of short lengths and full machine fittings shall be provided for use at manholes and connections. All connections will require the use of manufactured fittings. Field fabricated, saddle-type connections will not be considered acceptable.
- C. Any pipe or fitting having a crack or other defect or which has received a severe blow shall be marked rejected and removed at once from the work site. All field cuts are to be made with saw and 90 degree miter box. Bevel the cut end to the same as the factory bevel and remove all interior burrs. Measure and place a homing mark on the pipe before assembling. The pipe installed under this specification shall be installed so that the initial deflection, measured as described below, shall be less than five percent (5%).
- D. The manhole water stop gasket and stainless steel clamp assembly must be approved by the Town Wastewater Treatment Department prior to the installation of any pipe.
- E. The Contractor will submit certification that the materials of construction have been sampled, tested, inspected, and meet all the requirements including wall thickness in accordance with ASTM D-3034 or ASTM F679 for all pipe and fittings to be included in project work. PVC pipe shall not be installed when the temperature drops below 32 degrees Fahrenheit or goes above 100 degrees Fahrenheit. During cold weather, the flexibility and impact resistance of PVC pipe is reduced. Extra care is required when handling PVC pipe during cold weather. PVC pipe shall not be stored outside and exposed to prolonged periods of sunlight, as pipe discoloration and reduction in pipe impact strength will occur. Canvas and other opaque material shall be used to cover PVC pipe when stored outside.
- 2.03 PVC PRESSURE SEWER PIPE
- A. PVC pipe shall conform in all respects to the latest revisions of ASTM Specifications D-2241. All pipe and fittings shall be SDR 26 (or as specified on plans) clearly marked as follows:
- Manufacturer's Name and Trademark - Nominal Pipe Size (as shown on plans)
- Material Designation 12454-A PVC ASTM D-1784
- B. Joints shall be push-on type using elastomeric gaskets factory installed conforming to ASTM Specification D-3212.
- 2.04 MANHOLES
- A. Manholes shall be sized as indicated on the plan and shall be precast concrete with a monolithic base and shall conform to the latest version of ASTM Specification C478.
- B. Shelves shall be constructed with concrete having a minimum compressive strength of 3,000 psi at 28 days. Inverts for sewer manholes shall be as shown on the plans and details and shall be constructed with concrete or brick, as per the

ıу	direct.

- local municipality's standards. Inverts shall have the exact shape of the sewer to which they are connected, and any change in size of direction shall be gradual and even.
- C. All manholes are to be provided with copolymer polypropylene plastic steps with steel reinforcement 12 inches on center.
- D. All manholes shall be provided with rough, gray, cast iron manhole frames and covers. All iron castings shall be thoroughly cleaned and then coated with hot tar before being delivered. Frames and covers shall be LeBaron LC 266, or an approved equal, and have a minimum weight of 400 pounds.
- E. Precast risers and bases for manholes shall conform to ASTM Specification C-478. The pipe opening in the precast manhole system shall have a cast-in-place flexible gasket or an equivalent system for pipe installation as approved by the Engineer. Joints between manhole risers shall be 1" minimum width flexible gasket or approved equals.
- 2.05 CLEANOUTS
- A. Cleanouts for gravity sewers and force mains shall be provided at locations indicated on the plans or as directed by the Engineer. Cleanout frames and covers shall be of tough gray cast iron. Castings shall be true to pattern and free from flaws. The bearing surface of cleanout frames and covers against each other shall be machined to give continuous contact throughout their circumference.
- 2.06 PIPELINE INSULATION
- A. Approved sewer lines with less than four feet (4'-0'') of cover over the crown, five (5'-0'') in plowed areas that cross a storm sewer, or where indicated on the plans, shall be protected against freezing by the installation of two inch (2") thick highest available density extruded polystyrene insulating sheets or equivalent. Sheets shall be the the lesser of 3' or 2 x diameter of the pipe. The sheets shall be placed six inches (6") above the crown after placement of four to six inches (4"-6") of clean medium or coarse sand below the pipe bottom and four to six inches (4"-6") above the crown. Joints shall be overlapped so there is no gap that will allow frost to penetrate. Care shall be exercised during backfill and compaction over the polystyrene sheets to prevent damage to the sheets. The polystyrene sheets shall meet the comprehensive strength requirements of ASTM D1621-73. In no cases shall the waterline have less than four feet (4') of cover over the top of the pipe. When sewer line passes within 5 feet of a catch basin install 2" min. rigid insulation, polystyrene sheets, between sewer line and cb.
- PART 3 EXECUTION
- 3.01 GENERAL
- A. Care shall be exercised by the Contractor to avoid disrupting the operation of existing sanitary sewer facilities without prior written approval of the Engineer.
- B. When existing underground utilities not scheduled for removal or abandonment are encountered in the excavation, they shall be adequately supported and protected from damage. Any damage to utilities shall be repaired promptly at no additional cost to the Owner.
- C. Installation of pipe shall be in accordance with the Utility Trenching and Backfilling and as specified by this section.
- 3.02 BEDDING FOR PIPE
- A. The bedding material shall be shaped to fit the pipe for a depth of not less than 10 percent of its total height and shall have recesses to receive the bell.
- 3.03 LAYING PIPE
- A. In general, sewer pipe shall be installed in accordance with the latest detailed instructions of the manufacturer.
- B. The laying shall begin at the outlet end and the lower segment of the pipe shall be in contact with the shaped bedding throughout its full length. Bell or grooved ends of rigid pipes and the circumferential laps of flexible pipe shall be placed facing upstream.
- C. All pipe and fittings shall be carefully examined for defects and no pipe or fittings shall be laid which are known to be defective. If any defective piece is discovered after laying, it shall be removed and replaced at the Contractor's expense. All pipes and fittings shall be cleaned before they are laid and shall be kept clean until accepted in the completed work.
- D. The pipe shall be laid to conform to the lines and grades indicated on the drawings or given by the Engineer. Each pipe shall be so laid as to form a close joint with the next adjoining pipe and to bring the inverts continuously to the required grade.
- E. The Contractor shall take all necessary precautions to prevent flotation of the pipe in the trench.
- F. When pipe laying is not in progress, the open ends of the pipe shall be closed with temporary watertight plugs. If water is in the trench when work is resumed, the plug shall not be removed until all danger of water entering the pipe is eliminated.
- G. For force mains, concrete reaction blocking shall be provided as detailed at all bends deflecting $22\frac{1}{2}$ degrees or more. At the Contractor's option, retainer glands may be used at bends in lieu of concrete blocking. Retainer glands shall also be provided at all joints within three pipe lengths each side of the bends.
- H. Any pipe that is not laid to grade and alignment shall be re-laid to the satisfaction of the Town Wastewater Department. The bedding material shall be placed and compacted on each side of the pipe to a height equal to one-half (1/2) the pipe diameter and for the full width of the excavated trench and as shown on the accepted plans. Bedding shall be #2 pea stone from Shelburne Limestone or an equivalent approved by the Town Wastewater Department and the Engineer.
- I. All sewer pipes shall be marked with magnetic marking tape. The marking tape shall be installed one (1) foot directly over . Concrete thrust blocks "sewer "the pipe and shall be labeled or anchors shall be placed at bends, tees, fittings,

and other locations on the force main as shown on the contract drawings or as directed by the Town Wastewater Department. Concrete for thrust blocks and anchors shall b Class B concrete. Steel rods and clamps as required shall galvanized and rust proofed or painted.

- 3.04 GRAVITY SEWER PIPE TESTING
- A. The Contractor shall provide all necessary equipment and instrumentation required for proper completion of the flushing and testing. Quality of water, test procedures, and method of disposal of water shall be approved by the Engineer. Prior to testing, flush with water to remove construction debris and pass through a full gauge squeegee
- B. All tests shall be made in the presence of the Engineer. Preliminary tests made by the Contractor without being observed by the Engineer will not be accepted. The Engine will be notified at least eight hours before any work is to b inspected or tested. The Town shall be notified at least at least two (2) days before testing.
- C. The maximum sewer length to be tested at one time shall that length between any two manholes.
- D. Air Testing: Low pressure air testing shall be conducted in accordance with the following procedures:
- 1. Each end of the test section and laterals shall be plugged, capped and braced. Necessary safety precautions shall be taken to prevent blowouts and possible injury.
- 2. An air hose shall be connected to a tapped plug used an air inlet. The hose will be connected to the air control equipment, which shall include valves and pressu gauges. These shall allow air to enter the sewer test line, monitor air pressure in the sewer, shut off air, and provide pressure reduction and relief. The monitoring pressure gauge shall have a range of 0-10 psi with divisions of 0.10 psi and accuracy of 0.05 psi±.
- 3. The air compressor and air supply shall be connected to the test line and the test section filled slowly, until a constant pressure of 4.0 psig is maintained.
- 4. A pressure above 3.0 psig shall be maintained for at least five minutes to allow the temperature to stabilize. A check for leaks shall be made and if any are found, the pressure shall be released and the fitting replaced repaired.
- 5. After the stabilization period, the pressure shall be adjusted to 3.5 psig and the air supply disconnected.
- 6. Measure and record the time interval for the test line pressure to drop from 3.5 psig to 2.5 psig.
- 7. If the groundwater table is above the pipe, increase abo test pressures 0.5 psig for each foot the groundwater above the invert of the pipe.
- 8. The requirements of this specification shall be considered satisfied if the time required in seconds for the pressure to decrease from 3.5 to 2.5 psi greater than the average back pressure of any groundwater that may submerge the pipe is not less than that computed according to t following table:

Minimum Test Time for Various Pipe Sizes Time (Sec. /100 Ft.) Diameter (Inches) 75 90

3.05 MANHOLES

12

A. The excavation shall be to the depth indicated on the plans ordered by the Engineer, and carefully shaped and graded.

110

- B. Manhole sections shall be precast concrete and shall conform to the dimensions indicated on the plans or ordered by the Engineer.
- C. Channels, inverts and floor areas for sewer manholes shall constructed of concrete. Inverts shall have the exact sha of the sewer to which they are connected and any change size or direction shall be gradual and even. All constructio of sewer manholes must be carried out to insure watertight work.
- D. The required precast concrete risers shall be placed on top of the concrete to the elevation indicated on the plans or ordered by the Engineer.
- E. The cast iron frame shall be set as indicated on the plans a full mortar bed. The cover shall be properly placed in th frame.
- 3.06 MANHOLE TESTING
- A. Manholes shall be tested separately by one of the following two procedures:
- 1. Exfiltration Leakage Test: All pipes and other openings into the manhole shall be suitably plugged and the plug braced to prevent blowout. The manhole shall then be filled with water to the top of the cone section. A period of time may be permitted, if the Contractor so wishes, to allow for absorption. At the end of this peric the manhole shall be refilled to the top of the cone, if necessary, and the measuring time of at least four hou begun. At the end of the test period, the manhole sho be refilled to the top of the cone, measuring the volur of water added. This amount shall be converted to gallons per vertical foot depth for 24 hours. The leaka for each manhole shall not exceed one gallon/vertical foot/day. If leakage exceeds the allowable rate, repairs shall be made as approved by the Engineer and the manhole retested. If the Contractor elects to backfill pri to testing, the testing shall be at his own risk, and it shall be incumbent upon the Contractor to determine the reason for any failure of the test. No adjustment in the leakage allowance will be made for unknown causes such as leaking plugs, absorption, etc. It will be assumed th all loss of water during the test is a result of leaks through the joints or through the concrete. Furthermore the Contractor shall take any steps necessary to assure the Engineer that the water table is below the bottom

	1	the manhole throug	hout the test.			SITE ENGINEER:	A
be	2.	Vacuum Test: This eakage involves the of the manhole cor the manhole, creat for a prescribed pe	s method of tes e use of a devi ne section and ing a vacuum a	ce for sealing th pumping the air Ind holding this \	e top out of /acuum		E
ng d	ł	test is as follows: a. All lifting holes pointed with an	and exterior jo approved non-	ints shall be fille -shrinking mortar	d and . The	CIVIL ENGINEERING 10 MANSFIELD VIEW LANE, SC P: 802-864-2323 FAX: 802-86	OUTH BURLINGTON, VT 05403
2.		testing. Manho excavated to e vacuum testing	les which have pose the entire or the manhole	e backfilled prior been backfilled s e exterior prior to e shall be tested ration leakage te	hall be o for	copyright © 2019 - all drawn MAB	RIGHTS RESERVED
er De	ł	 All pipes and o be suitably plug displacement. 	ther openings ir	nto the manhole		CHECKED DSM	
be	(ring with air to	hole shall be in pressure adequ	er ring the size istalled by inflatir uate to prevent l and the manhol	ng the eakage	APPROVED DSM	
1	(d. Air shall then b an opening in t inside of the m on an approved	e pumped out he plate until c anhole equal to	of the manhole vacuum is crea 10 inches of m . The removal c	through ted ercury	IREL	.AND MENT, LLC
for ire		e. The manhole sh at 10" Hg or d following times: <u>of 4'ø Manhole</u>		est if the vacuum han 9" Hg within <u>Seconds</u>			RIAL AVENUE ERMONT 05403
d	0' 10 15	- 10' 0' - 15' 5' - 20' 0' - 25'	2 2 3 3	0 30 0 30			
0	1		periods, the ma rough 5 above	nhole shall be re repeated until th	sealed	PROJECT:	
or		be backfilled co If the manhole backfill, it shall Steps 1 through	refully so that is disturbed in again be vacuu 5 above. If t ne Contractor s	vacuum test, it no leaks are cre any way during um tested accord the manhole fails hall test the man test.	ated. ling to the	FAF	ERLAND RMS IUNITY
ove	ł		each manhole le	akage test result	t.		
is	Ĭ	. Manholes shall building manhol		accepted prior to			ICE ROAD
ed re	3.07 PRES	SURE PIPE TESTING				COLCHI	ESTER, VT
ige he	test anch block seve plugs	eral: All force ma and leakage test nors and braces sh ks and restraints s n days. All buried s shall be installed alled at the high p	described herein all be installed. hall be in place pipe shall be t and air release	n. Prior to testir All concrete th and cured at le backfilled. Suitat	ng, all rust east		
	1. <i>v</i>	ostatic Test: The All air release valve be filled with water capacity of the air	es shall be oper at a rate not	ned and the pipe	shall		
s r	2.	The water pressure designed operating nighest point.	shall be raised				
rm 9	ł	Failure to hold the the specified test p constitutes a failur	pressure for the	two hour period			
be	C. Leak	age Test: The fol	lowing procedur	e shall be used:			
ipe in on t	r	_eakage shall be d must be supplied in pressure within 5 p	nto the pipe be	ing tested to mo	iintain		
as		No pipe installation greater than that (L=				DATE CHECKED	REVISION
in ne		L=	7,400 Wh SD(P)^0.5 133,100	ichever is less	-		
		S = Lengt L = Allowo D = Nomi P = Avero	h of Pipe Testin able Leakage in nal Diameter of ge Test Pressur	Ğal/Hr Pipe (") re (psi)			
js		N = Numt esting shall be cor D-87 or latest revi	iducted in acco	the Pipeline Test rdance with AWW			
od,	3.08 PUMP	STATION AND STO	RAGE TANK TES	STING		SITE	
irs all me	store	p Station and Stor age tanks shall be following procedure	tested for leak			SPECIFIC	ATIONS
ige S	all li with the	er Test: After the fting holes and ex non shrinking mor structure shall be revent blowout.	erior joints sha tar. All pipes ar	II be filled and p nd other opening	ointed s into		
ne he h nat		Each structure sha with water to the stabilization period for absorption. At shall be refilled to the measuring time the end of the tes	op of the cone of one hour sh the end of this the top of the of at least six	section. A all be provided t period, the struc cone, if necessa hours begun.	o allow cture ry, and At	date 11/01/2019 scale NONE	drawing number
e, e of	ł	the end of the tes to the top of the added.				PROJ. NO. 14134	

- 2. This amount shall be converted to a 24-hour rate and the leakage determined on the basis of depth and size of structure. The leakage for each structure shall not exceed one aallon per vertical foot per 15 linear feet of wall (as measured in plan view) for a 24 hour period for exfiltration and there shall be no visible infiltration.
- C. Air Test: Alternatively, the manhole may be tested for leakage using the following procedure:
- 1. All lifting hole and exterior joints shall be filled and pointed with an approved non-shrinking mortar. The completed manhole shall not be backfilled prior to testing. Structures that have been backfilled shall be excavated to expose the entire exterior prior to vacuum testing or the manhole shall be tested for leakage by means of a hydrostatic test.
- 2. All pipes and other openings in the manhole shall be suitably plugged in a manner to prevent displacement.
- 3. A plate with an inflatable rubber ring the size of the top of the manhole shall be installed by inflating the ring with air to a pressure adequate to prevent leakage of air between the rubber ring and the manhole wall.
- 4. Air shall then be pumped out of the manhole through an opening in the plate until a vacuum is created inside of the manhole equal to 10 inches of mercury on an approved vacuum gauge. The removal of the air shall then be stopped and the test time begun.
- 5. The vacuum must not drop below 9 inches of mercury within a 2 minute test period. If more than 1 inch of drop in vacuum occurs within the 2 minute test period the manhole has failed the test and shall be repaired or reconstructed and retested.
- D. Following satisfactory test results, the manhole may be backfilled.

3.09 SERVICE CONNECTION

No sanitary sewer shall be placed in service until such time as the Town has given final approval to the sewer installation, including satisfactory completion of all required tests. Service connections shall not be made until all receiving sewer mains have been completed and approved and as-builts received along with GPS coordinates and approved by the Town Wastewater Department.

A. Laterals

Where required on the plans, sewer service connections for one house shall be constructed of four inch (4") pipe, unless otherwise noted on the plans, of the type material specified under this section. The pipe shall be laid and its joints made as required for sewer construction in this specification. Open ends of pipes shall be properly sealed to prevent damage and intrusion of foreign matter where hookup to the building sewer is not coincident with sewer main construction. Additionally, the Contractor will provide a stable, temporary marker approved by the Town Wastewater Department from the sewer service invert up to six inches (6") above the finish grade and seated securely into the ground for ease in relocating the end of sewer service connection for hooking up the building sewer. Two (2) tie points to permanent objects shall be documented. The tie points shall be submitted to the homeowner and to the Wastewater Department.

In the case of reconnection of existing services, such reconnection will be made only after the new sewer main has been completed, tested, and accepted. The excavation, bedding material, installation, and backfill for service connections shall be the same as for sewer mains.

B. Cleanouts for Sewers

Cleanouts for gravity sewers and force mains shall be provided at locations indicated on the plans or as directed by the Town Wastewater Department. Cleanout frames and covers against each other shall be machined to give continuous contact throughout their circumference. All iron castings shall be thoroughly cleaned and then coated with hot coal tar before being delivered. Individual laterals shall have cleanouts every one hundred feet (100'). Cleanouts shall also be installed in laterals with changes of alignment of 45 degrees or greater.

C. Chimneys

Chimneys shall be built of four inch (4") pipe and/or as indicated on the contract drawings. Each chimney shall be plugged or capped at end until ready to connect to existing services. Chimneys are required where the vertical drop between the finished grade surface and the main sewer line exceeds fifteen feet (15') at the wye from a service connection.

3.10 Force Main

After force mains have been laid and the trench backfilled, the pipe shall be subjected to a hydrostatic pressure test in accordance with AWWA Standard for Installation of Cast Iron Water Main, AWWA C600 (latest issue), Section 13. The hydrostatic pressure shall be 150 percent (150%) of normal operational pressure. After the pressure test has been satisfactorily completed, a leakage test shall be conducted in accordance with AWWA C600 (latest issue), Section 13. The minimum test pressure shall be 75 pounds per square inch at the high point in the system.

3.11 Wet well

The pre-cast concrete wet well shall be externally coated with an asphaltic sealant and tested for water tightness using an approved vacuum or water testing procedure.

PART 4 - PUMP STATION

4.00 SPARE PARTS

- A. A complete replacement pump shaft seal assembly shall be furnished with each lift station. The spare seal shall be securely fastened to the control panel and shall include complete installation instructions.
- B. Two (2) spare volute gaskets shall be provided.
- C. A spare filter cone for the seal filter shall be provided in the same container as the pump shaft seal.
- D. Provide 100% spare lamps and fuses for control panel.

- E. Provide all lubricants required for initial operation.
- F. Provide one (1) spare input and output card, processor, and power supply for the Programmable logic controller (PLC) system.
- G. Provide one (1) spare level transducer.

4.01 0 & M MANUALS

- A. Installation of all mechanical equipment shall be done in accordance with written instructions provided by the manufacturer. Installation instructions shall be delivered with the station.
- B. The manufacturer shall provide 5 copies of a complete and detailed operating and maintenance manual. This manual shall provide all design criteria, general operating procedures, maintenance and servicing procedures for all major components, and as-built drawings of the contributory gravity sewer system, the pumping station and force main. All instructions and parts lists shall be prepared for the specific equipment furnished and shall not refer to similar equipment. Operating manuals must be submitted to the Town prior to final acceptance of the station.
- 4.02 POLYETHYLENE (PE3408) SANITARY SEWER FORCE MAINS
- A. This specification covers requirements for PE3408 high density polyethylene sanitary sewer force mains. All work shall be performed in accordance with these specifications and manufacturer requirements.
- B. <u>Referenced Standards</u>. All standard specifications, i.e., Federal, ANSI, ASTM, etc., made a portion of these Specifications by reference, shall be the latest edition and revision thereof.
- C. Warranty and Acceptance. The Contractor shall warrant all work to be free from defects in workmanship and materials for a period of one year from the date of completion of all construction. If work meets these specifications, a letter of acceptance, subject to the one year warranty period, shall be given at the time of completion. A final acceptance letter shall be given upon final inspection at the end of the one year warranty period, provided the work still complies with these specifications. In the event deficiencies are discovered during the warranty period, they shall be corrected by the Contractor without additional charge to the owner before final acceptance. During the warranty period, the Project Engineer shall determine if warranty repairs or replacement work shall be performed by the Contractor. The decision of the Project Engineer shall be binding upon the Contractor.

D. <u>Polyethylene Pipe and Fittings</u>

- 1. <u>Qualification of Manufacturers</u>. The Manufacturer shall have manufacturing and quality control facilities capable of producing and assuring the guality of the pipe and fittings required by these Specifications. The manufacturer's production facilities shall be open for inspection by the Owner or his Authorized Representative. Qualified manufacturers shall be approved by the Project Engineer.
- 2. <u>Materials</u>. Materials used for the manufacture of polyethylene pipe and fittings shall be PE3408 high density polyethylene (SDR 11 or better) meeting cell classification 345444C or 345444E per ASTM D 3350; and shall be listed in the name of the pipe and fitting manufacturer in Plastics Pipe Institute's TR-4, Recommended Hydrostatic Strengths and Design Stresses for Thermoplastic Pipe and Fitting

Compounds, with a standard grade HDB rating of 1,600 psi at 73°F. The manufacturer shall certify that the materials used to manufacture pipe and fittings meets these requirements.

- 3. <u>Polyethylene Pipe</u>. Polyethylene pipe shall be manufactured in accordance with ASTM F 714. Polyethylene (PE) Plastic Pipe (SDR-11 rating or better) Based on Outside Diameter, and shall be so marked. Each production lot of pipe shall be tested for (from material or pipe) melt index, density, % carbon, (from pipe) dimensions and ring tensile strength.
- 4. Polyethylene Fittings & Custom Fabrications. Polyethylene ittings and custom fabrications shall be molded or fabricated by the pipe manufacturer. Butt fusion outlets shall be made to the same outside diameter, wall thickness, and tolerances as the mating pipe. All fittings and custom fabrications and connections shall be fully rated for the same internal pressure as the mating pipe. Pressure de-rated fabricated fittings are prohibited.
- 5. Molded Fittings. Molded fittings shall be manufactured in accordance with ASTM D 3261, Butt Heat Fusion Polyethylene (PE) Plastic Fittings for Polyethylene (IPE) Plastic Pipe and Tubing, and shall be so marked. Each production lot of molded fittings shall be subjected to the tests required under ASTM D 3261.
- 6. <u>Fabricated Fittings</u>. Fabricated fittings shall be made by heat fusion joining specially machined shapes cut from pipe, polyethylene sheet stock, or molded fittings. Fabricated fittings shall be rated for internal pressure service at least equal to the full service pressure rating of the mating pipe.
- 7. <u>Polyethylene Flange Adapters</u>. Flange adapters shall be made with sufficient through-bore length to be clamped in a butt fusion joining machine without the use of a stub-end holder.
- 8. <u>Back-up Rings & Flange Bolts</u>. Flange adapters shall be fitted with back-up rings pressure rated equal to or grater than the mating pipe. The back-up ring bore shall be chamfered or radiused to provide clearance to the flange adapter radius. Flange bolts and nuts shall be Grade 6 or higher (stainless steel).
- 9. Compliance Tests. Manufacturer's inspection and testing of the materials. In case of conflict with manufacturer's certifications, the Contractor, Project Engineer, or Owner may request retesting by the manufacturer or have retests performed by an outside testing service. All retesting shall be at the requestor's expense, and shall be performed in accordance with the Specifications.

1. Heat Fusion Joining. Joints between plain end pipes and fittings shall be made by butt fusion, electrofusion couplings and joints between the main and saddle branch fittings shall be made using saddle fusion procedures that are recommended by the pipe and fitting manufacturer. The Contractor shall ensure that persons making heat fusion joints have received training in the manufacturer's recommended procedure. The Contractor shall maintain records of trained personnel and shall certify that training was received not more than 12 months before commencing construction. External and internal beads shall not be removed.

- 2. <u>Butt Fusion of Unlike Wall Thicknesses</u>. Fusions of different wall thickness are acceptable, as long as the difference is limited to a one SDR difference, i.e. SDR 11 to SDR 9. Transitions between unlike wall thicknesses greater than one SDR shall be made with a transition nipple (a short length of the heavier wall pipe with one end machined to the lighter wall) or by mechanical means.
- 3. Joining by Other Means. Polyethylene pipe and fittings may be joined together or to other materials by means of (a) flanged connections (flange adapters and backup rings), (b) mechanical couplings designed for joining polyethylene pipe or for joining polyethylene pipe to another material, or (c) electrofusion. When joining by other means, the installation instructions of the joining device manufacturer shall be followed. All connections shall maintain the total pressure rating of the force main.
- 4. <u>Mechanical Joint Installation</u>. Mechanical joints shall be installed in accordance with the manufacturer's recommended procedure. When an OD compression mechanical coupling is used, a stiffener shall be installed in the bore of the polyethylene pipe.
- 5. <u>Branch Connections</u>. Branch connections to the main shall be made with saddle fittings or tees. Polyethylene saddle fittings shall be saddle fused to the main pipe.
- 4.03 HORIZONTAL DIRECTIONAL DRILLING W/ POLYETHYLENE PIPE
- A. Directional boring with PE3408 pipe shall be completed in accordance with the manufacturer's requirements and shall not in any way affect the joint connections or the overall strength characteristics of the pipe.

B. References:

"Mini-Horizontal Directional Drilling Manual" published by North American Society for Trenchless Technology (NASTT).

"Guidelines for a Successful Directional Crossing Bid Package" published by Directional Crossing Contractors Association (DCCA).

"Polyethylene Pipe for Horizontal Directional Drilling" of the Plastic Pipe Institute's Handbook of Polyethylene Piping.

C. <u>Quality Control</u>. All directional boring shall be completed in such a way as not to jeopardize the existing infrastructure/facilities, such as the roadway, utility poles, subsurface utilities, structures/foundations, or significant landscaping. Prior to directional drilling, all potential conflicts shall be field verified.

D. General

- 1. Directional drilling shall be performed in a manner required to install HDPE utility line as indicated on the drawings. Furnish all manpower and equipment required to perform the pipeline installation. The operation shall include all excavation and dewatering, drilling calculations, pilot hole, and pullback operations. Contractor shall be responsible for type of reamer, diameter, and other pertinent operations required for a complete installation. Contractor shall be responsible for mobilizing on-site with a full range of drill stems and reaming heads to allow for various factors which may occur. Drill stems shall be of proper size and diameter to allow for full thrust and torque capabilities of the drilling machines.
- 2. Contractor shall perform utility survey to locate information concerning existing utility lines located in the areas of the directional drilling work.
- 3. Directional drilling shall be accomplished by drilling from one side of the crossing to the other using an approved method. One method shall be drilling a small diameter pilot hole along the proposed utility route. Steering shall be accomplished by using drilling mud which is pumped into the drill pipe to provide rotational energy in a drill bit at the end of the drill pipe. A jet bit shall force the mud through small orifices and jet away the earth and to allow the drilled path to curve in the proper direction as the drill pipe is thrust forward. An electronic survey instrument shall be placed inside the drill pipe head. The instrument shall signal a computer of the drilled paths magnetic azimuth, vertical inclination, and orientation of the bend. This data shall be used by the drilling contractor to calculate location of the drill bit and allow steering adjustments to be made.
- 4. After completing the pilot hole, larger diameter reaming heads shall be pulled back in order to enlarge the hole as required to allow for the pipe pullback. The Contractor shall be responsible for multiple reaming operations as required to complete the work. Pull back operations shall be carried out as soon as possible following the final preream. During this phase of the work, the Contractor shall continue his work operations without interruption regardless of the day of week or hour of the day. A pullback head shall be attached to the pipe to allow fastening to the swivel head reamer. The head shall be closed to prevent drilling mud from entering the main during the pullback operation.
- 5. Upon completion of the drilling operations, the equipment and materials used shall be removed from the site and the areas disturbed shall be restored to original conditions. The main shall be tested in accordance with Section 02730 of the Specifications. If the main fails the testing, it shall be removed and the work repeated at no additional cost to the Owner.

WATER SUPPLY SYSTEM

PART 1 – GENERAL

- 1.01 SUMMARY
- A. Section includes:
- 1. Pipe Materials
- 2. Hydrants
- 3. Valves
- 4. Fittings
- 5. All other appurtenances necessary to complete the water main system as shown on the Contract Plans.

1.02 SUBMITTALS

A. Product Data: Submit published data from manufacturers of products and accessories specified, indicating compliance with requirements to the Engineer and local municipality.

1.03 QUALITY ASSURANCE

A. All materials and the installation procedure shall be in accordance with the Department of Environmental Conservation, Water Supply Division and the applicable construction ordinances of the local municipality.

PART 2 - PRODUCTS

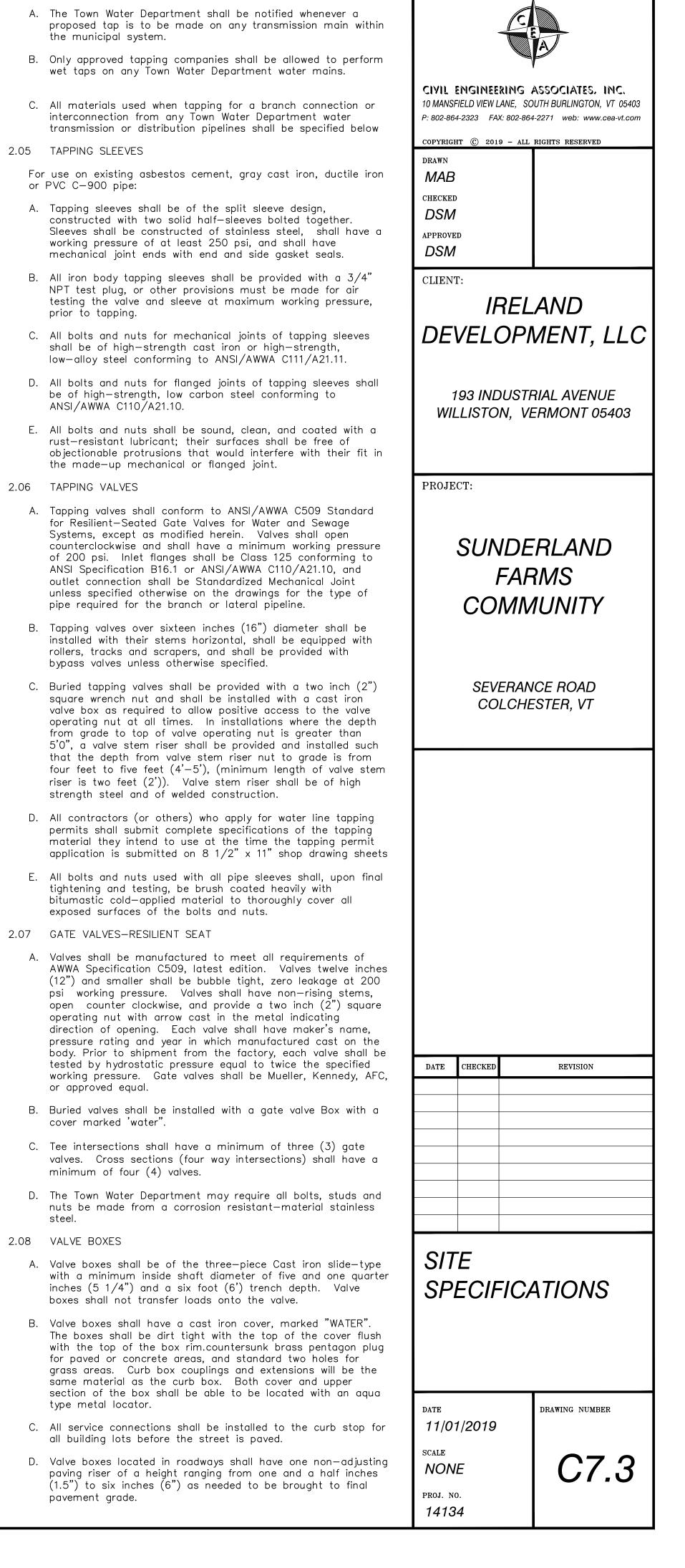
- 2.01 GENERAL
- A. Furnish ells, tees, reducing tees, wyes, couplings, increasers, crosses, transitions and end caps of the same type and class of material as the conduit, or of material having equal or superior physical and chemical properties as acceptable to the Engineer as necessary to complete the water system.

2.02 WATER MAIN MATERIAL

C-900 PVC WATER MAIN

A. Pipe shall be C-900 (DR-14 305 psi) PVC (sizes as shown on the plans) conforming to current AWWA C-900, latest revision and shall be UL and FM approved. Larger size mains will be required if necessary to allow withdrawal of the required fire flow while maintaining the minimum pressure specified in the VT Water Supply Rule, Chapter 21, 8.1.1. Any proposed departure from minimum requirements shall be justified by hydraulic analysis and future water use assessment, and will be considered only in special

circumstances (VT Water Supply Rule, Chapter 21 8.1.4). Push-on joint accessories shall conform to applicable requirements of ANSI/AWWA C111/A21.11.


B. When a pipe material is specifically noted on the contract drawings, the contractor/developer shall not have the option of utilizing any other pipe material. Galvanized pipe or fittings shall not be used in any water system owned or maintained by the Town. The Town Water Department requires the use of polyethylene pipe sleeve encasements and/or alternate pipe materials in known or suspected corrosive soil conditions.

DUCTILE IRON WATER PIPE

- A. Pipe shall be Tyton Ductile Iron Class 52 (sizes as shown on the plans) conforming to current ANSI/AWWA C151/A21.51 latest revision. Push-on joint pipe shall be minimum thickness Class 52. Push-on joint accessories shall conform to applicable requirements of ANSI/AWWA C111/A21.11.
- B. Pipe shall be cement mortar lined on the inside in accordance with ANSI Specification A21.4 except that the cement lining thickness shall not be less than 1/8 inch. A plus tolerance of 1/8 inch will be permitted.
- C. Pipe shall be given an exterior petroleum asphaltic coating in accordance with ANSI/AWWA Specification C151/ASNI A21.51.
- D. Pipe shall be poly wrapped with a minimum thickness of 4 mil poly in accordance with AWWA Specification C105 / ANSI A21.5, unless approved otherwise.

2.03 FITTINGS

- A. Ductile iron fittings shall conform to ANSI/AWWA C110/A21.10. 350 PSI working pressure. Ductile iron fittings larger than twelve inches (12") shall have a standard body length equal to Class 250 Cast Iron fittings. Cast Iron Class 250 fittings will be allowed in lieu of ductile iron fittings larger than twelve inches (12"). Ductile iron fittings shall be rated for 250 p.s.i. However, twelve inch (12") and smaller may be rated for 350 p.s.i. with the use of special gaskets. All ductile iron compact fittings shall conforming to AWWA/ANSI C153/A21,53 standards.
- B. Anchor tees shall be standard mechanical joint tees except that the branch is plain Class 250 cast iron or Class 350 ductile iron, cement lined, conforming to ANSI/AWWA C110/ A21.10, C111/A21,11, and C104/A21.4. Anchor tees shall be Clow F-1217, U.S. Pipe U5-92 or equal.
- C. Mechanical Joint restraints shall be incorporated into the design of the follower gland and shall include a restraining mechanism which, when actuated, imparts multiple wedging action against the pipe increasing its resistance as the pressure increases. Flexibility of the joint shall be maintained after burial. Glands shall be manufactured of ductile iron, and have a minimum working pressure of 350 psi. Twist off nuts (i.e. mega-lug) or equal shall be used to ensure proper actuating of the restraining devices. Contractors may also use approved grip ring (or equal) retainer glands.
- D. Bolts shall conform to ANSI Specification A21.10.
- E. Pipeline couplings shall conform to AWWA Standards C110 and ANSI A21.10. Mechanical joint connecting pieces of proper diameter shall be installed in accordance with the manufacturer recommendations and at locations directed by the plans or the Town Water Department.
- F. All fittings shall be mechanically restrained (i.e. Megalug or equal); double poly wrapped and have concrete thrust blocks poured in place as defined herein.
- 2.04 TAPPING SLEEVES AND VALVES

SITE ENGINEER:

Α.		ion shall be approved or maintained	
	protected as required by ordinances. The type of p degree of hazard that ex designed to protect pota	tment unless the water supply is State laws, regulations and protective device shall depend on the kists. In general, backflow devices ble water supplies in accordance with for non-health hazard cross	
	connections and continuc used, i.e. Watts Series 00 709 Double Check Valve installed on all sprinkler	ous pressure applications shall be 07 or approved equal. Watts Series Assembly or approved equal shall be systems. A shop drawing detail ow devices and meter placements	
2.10	PIPE BEDDING		
Α.	established by the plans shall be excavated to the plan typicals. Pipeline tree directly on the trench bo by machinery, but shall be such that the trench sho the pipe throughout its e material. Pipeline trench may be excavated to the No pipe shall be laid dire compact glacial till. Whe encountered and the Tow it cannot support the pip shall be excavated and r approved material at the trenches shall be dry dur	and maintained on lines and grades for the project. Pipeline trenches e width and depths shown on the nches in which pipe is to be laid ottom shall not be excavated entirely be finally excavated by hand tools all have a bottom shaped to support entire length by firm and undisturbed es, for which bedding is required, e required depths using machinery. ectly on ledge, hard shale or a very en an unstable trench bottom is on Water Department determines that be adequately, an additional depth efilled to the pipe invert with contractor's expense. Pipeline ring the laying of pipe. Wood	
		be removed prior to backfilling. dures can be found in AWWA	
В.	Bedding material shall cc conforming to ASTM D23	nsist of crushed or natural stone 21.	
	<u>Sieve</u> 1" Screen	Percent Passing 100%	
	¾" Screen ½" Screen ⅔" Screen No. 4 Sieve	$ 100\% \\ 90 - 100\% \\ 40 - 70\% \\ 0 - 15\% $	
C.	-	erial shall be Class II material (ASTM an, granular material (sand), particle follows:	
	Sieve	Percent Passing	2.1
	No. 4 No. 100 No. 200	100% 30% 12%	
2.11	PIPELINE INSULATION		
	over the crown, that crown on the plans, shall be prinstallation of two inch (extruded polystyrene insustall be the the lesser of The sheets shall be placed after placement of four medium or coarse sand six inches $(4" - 6")$ about the sheets. The polystyr comprehensive strength r no cases shall the water cover over the top of the sheet top of the top of the sheet top of the t		
	Polyethylene pipe encaser	nent may be required in areas of conform to current ANSI/AWWA	2.1
	C105/A21.5 Specifications for the polyethylene film laminated virgin polyethyl	s. Minimum material requirements shall be high density, cross ene 4 mil film. The Town Water right to specify Polyethylene pipe,	
	the pipe or fittings and material and shall be ins the above ANSI/AWWA st		
	CONCRETE FOR THRUST BL Concrete shall be Portlan	.OCKS Id Cement concrete of 3,000 psi	
	specification for transit r concrete quality. A max	ssive strength. ASTM C-94 nixed concrete shall control the imum water cement ratio of 6 naximum slump of four inches (4")	
2.14	FIRE HYDRANTS AND HYD		
Α.	A-423 or Kennedy K-81 C502 with the following s		
	 Main Valve Opening: Nozzle Arrangement: 	5 1/4 inches Two 2 1/2 inch Hose Nozzles with	
	•	ace of or as an attachment to: One lozzle with National Standard Thread	
	 3. 4" Storz nozzle in plating 1/2 inch Pumper N (NST). 4. Inlet Connection: 6 in 	ace of or as an attachment to: One lozzle with National Standard Thread nch Mechanical Joint, "Mega-Lug" or	
	 4" Storz nozzle in pla 4 1/2 inch Pumper N (NST). Inlet Connection: 6 ir equivalent retaining g 	ace of or as an attachment to: One Jozzle with National Standard Thread	

- 7. Depth of Bury: Six-foot cover. The hydrant shall have at least 15 inches and no more than 21 inches between the bottom of the steamer cap and the ground.
- 8. Drain: The hydrant shall be non-draining or have the drains permanently plugged.
- 9. Color: Red enamel
- 10. Other: Hydrants shall be compression type closing with the pressure. Hose and pumper nozzles shall be 1/4 turn type secured by stainless steel or corrosion resistant pins or screws. Pressure seals behind the nozzle flanges shall be "O" rings. A breakable coupling retained in place by stainless steel or corrosion resistant pins shall make the union between the upper and lower stems. The two-piece traffic flange shall be held in place by nuts and bolts. The upper barrel shall be able to rotate 360 degrees without removing any bolts. Hydrant flags shall be required and supplied for each hydrant. Wherever a traffic hazard appears to exist, curbing and/or bollards shall protect the hydrant.
- For single-family house subdivisions, there will be at least one hydrant at each intersection and a maximum of five hundred feet (500') between hydrants with a minimum water flow of 500 gallons per minute (gpm) at the flow hydrant with a 20-psi residual pressure at the residual hydrant. Hydrants should be located immediately adjacent to street property lines. A 20' x 20' easement will be required around all hydrants. No structures or plantings are to be placed within a 20' x 20' area of any hydrant.
- Where dead-end mains occur, they shall be provided with a fire hydrant if flow and pressure meet minimum requirements. If flows and pressure are not sufficient, then an approved flushing hydrant or blow off shall be installed for flushing purposes. Flushing devices should be sized to provide flows which will give a velocity of at least 2.5 feet per second in the water main being flushed. The open end of a blow off must be capped and terminate at least eighteen inches (18") above grade.
- When set in lawn space between the curb and sidewalk, no portion of the hydrant or nozzle cap will be less than one foot off the gutter face of the curb or edge of the sidewalk. Hydrants shall be a minimum of four feet (4') and a maximum of six feet (6') from the edge of the sidewalk to the closest point on the hydrant when placed behind the sidewalk. In the absence of a curb or sidewalk, no hydrant shall be placed more than six feet (6') from the edge of pavement. Hydrants shall be located so as to provide complete accessibility and minimize the possibility of damage from vehicles or injury to pedestrians.
- HYDRANT ASSEMBLIES
 - Hydrant assemblies shall consist of an anchor tee, a six inch (6") mechanical joint gate value conforming to the above specifications, the appropriate length of six inch (6") Ductile Iron Cement Lined, Class 52 pipe, all necessary anchor couplings and approved restraining glands, the fire hydrant and appropriate thrust block.
- Care shall be taken to prevent damage to hydrants and appurtenances during handling and installation. All materials shall be carefully inspected for defects in workmanship and materials; all debris and foreign material cleaned out of the hydrant bowl; all operating mechanisms operated to check their proper functioning, and all nuts and bolts checked for tightness. All hydrants shall be carefully incorporated in the water main and supported in their respective positions free from distortion and strain. Hydrants shall be set plumb. All hydrants shall be oriented to most efficiently allow fire truck access and connection for emergency purposes. They shall be installed away from the curb line at sufficient distance to avoid damage from or to vehicles. Traffic model hydrants shall be installed so the breakaway flange is not less than two inches (2"), nor more than six inches (6") above the established grade, according to manufacturer recommendations. Hydrant locations are subject to the approval of the Town Water Department and the appropriate municipality's fire department. Installation for fire hydrants can be found in AWWA Standard C600.
- SERVICE CONNECTIONS
- Service lines shall be installed so as to run perpendicular, in a straight line from the water main to the curb stop.
- Each service shall consist of a corporation, curb stop, copper tubing and a curb box with a cast iron or stainless steel service rod. Service lines from three-quarter to two inch (3/4" to 2") shall be copper tubing from the corporation stop to the curb stop. Copper tubing shall be type "K", soft temper, conforming to ASTM B88. The name or trademark of the manufacturer and type shall be stamped at regular intervals along the pipe. Copper service pipe shall be one piece from the corporation to the curb stop. The minimum service for a single-family residence shall be three-quarter inch (3/4"). The minimum service for a duplex shall be one inch (1").
- Corporations shall be AY McDonald or Cambridge Brass Low-Lead and manufactured in accordance with AWWA C800. Corporations shall have threads per AWWA C800 Table 7 / Figure 2, at the inlet and a compression type fitting at the outlet. Both inlet and outlet shall be the same size. Three-quarter inch and one-inch corporations shall be directly tapped into ductile iron pipe six inches (6") and larger in diameter. Larger size corporations up to two inches (2") shall use a tapping saddle. Pipe less than six inches (6") shall require the use of a tapping saddle and corporation. Corporations shall be used for all taps up to two inches (2"). In no instance, except when a tapping sleeve and valve are used, shall a tap be made without a corporation. Corporations shall be Mueller 110 (3/4" - 1"), or Mueller H 15013 (1 1/2" - 2"). A connection made to a pipe that requires a tapping saddle or is not ductile iron will have a body with a suitable outlet, seal, and suitable means for attachment to the main. The body shall be made to conform to the outside configuration of the main. The service saddle shall be designed to provide a drip tight connection. The body shall be Teflon or Epoxy coated with stainless steel strap(s), bolts, nuts, and mechanism for attaching to the pipe barrel.
- Curb stops shall be a ball valve type with a minimum allowable pressure rating of 300 psi and be manufactured in

accordance with AWWA C800. The curb stop shall open left, have a positive stop, be full port, provide drip-tight shutoff in the closed position and be of the tee design or flat design. No curb stop shall have the ability to drain the service line. Both the inlet and outlet of the curb stop shall have compression type fittings. The tee head of the curb stop shall have the provision for the connection of a service rod. Curb stops shall be AY McDonald or Cambridge Brass Low-Lead, or approved equal. The curb stop shall rest on a four inch by eight inch by sixteen-inch (4" x 8" x 16") concrete block for support. Curb stops shall be installed just inside the municipality R.O.W.

- E. Curb boxes shall be of sliding adjustable type capable of adjusting from five feet to six feet (5' - 6') (Erie Style). The base of the box shall be arch type so as to prevent the box from resting on the curb stop. The adjustable upper section shall be one inch (1") diameter for use with 3/4"and 1" curb stops. For larger curb stops, the upper section shall be 1 1/4" in diameter. Stationary rods affixed to the key of the curb stop with a brass pin shall be thirty inches (30") in length for 3/4" and 1" curb stops and twenty-four inches (24") for large curb stops. Curb box rods may be cast iron or stainless steel, as determined by the Town Water Department. The word "WATER" shall be inscribed on the cover of the box.
- F. Services greater than 2" diameter shall be constructed using C900 PVC pipe in accordance with the requirements set forth in Section 2.02 on Sheet C7.3

PART 3 - EXECUTION 3.01 INSTALLATION

- A. Contractors shall notify the Town Water Department and Dig Safe at least seven days prior to any work on the water system.
- B. Skilled workers experienced in such work shall install all items. Tools shall be adequate for the work and in good condition so as to produce good, clean cut threads of the correct size, pitch, and taper.
- C. Installation of all water lines shall be in accordance with the latest version of AWWA C600 or AWWA C605, as applicable, current edition.
- D. Connection to an existing water main shall be done under the supervision of and with the approval of the Town Water Department. It is the applicant's, developer's, or owner of record's responsibility to secure ALL necessary connection permits and pay ALL applicable fees to make the connection, and to coordinate all parties involved in the process. The engineer and the Town Water Department shall be notified at least two working days in advance of the intended connection time. No existing valves, hydrants, curb stops, etc. shall be operated without prior approval of the Town Water Department. The Town Water Department shall operate all valves initially to ensure the integrity of the valve. The Town Water Department may then allow the contractor to operate those valves. Any damage occurring after the use of any valve operated by the contractor shall be the contractor's responsibility.
- E. Care shall be taken to prevent damage to valves and other appurtenances during handling and installation. All materials shall be carefully inspected for defects in workmanship and materials; all debris and foreign matter cleaned out of valve openings, etc.; all operating mechanisms operated to check their proper functioning, and all other nuts and bolts checked for tightness. Valves and other equipment, which do not operate easily, or are otherwise defective, shall be replaced. All valves shall be carefully incorporated into the water main and supported in their respective positions free from all distortion and strain. Valves and valve boxes shall be set plumb. Valve boxes, besides being plumb, shall be centered directly over the valves.
- F. All pipes showing cracks shall be rejected. If cracks occur in the pipe, the contractor may, at his own expense and after approval of the Town Water Department, cut off cracked portions at a point at least twice the pipe diameter from the visible limits of the crack and use the sound portion of the pipe.
- G. All water mains shall have no less than six feet (6') of cover unless waived by the Town Water Department. The pipe shall be laid to conform to the lines and grades indicated on the Department. The Town Water Department may restrict work before November 15 and after April 1 during adverse weather conditions. The Town Water Department may not allow excavating for water mains during the winter months except by special permission for emergencies. Each pipe shall be laid so as to form a close joint with the next adjoining pipe and to bring the inverts continuously to the required grade. In no cases shall the waterline have less than four feet (4') of cover over the top of the pipe.
- H. Temporary support, adequate protection, and maintenance of all underground structures, drains, sewers and other obstructions encountered in the progress of the work shall be provided at all times. If utility service is interrupted as a result of work for the project, the contractor shall immediately restore service by repairing the damaged utility at the contractor's expense.
- I. At all times, when pipe laying is not actually in progress, the open ends of the pipe shall be closed by temporary watertight plugs or by other approved means. If water is in the trench when work is resumed, the plug shall not be removed until all danger of water entering the pipe has passed. During construction, the contractor shall conduct operations so as to prevent the accumulation of water, ice, and snow in the vicinity of excavations or in the vicinity of excavated areas, and to prevent water from interfering with the progress and quality of the work.
- J. Under no conditions shall water be allowed to rise in open trenches after pipe has been laid.
- K. Accumulated water, ice, and snow shall be promptly removed and disposed of by pumping or other approved means. Disposal shall be carried out in a manner that will not create a hazard to public health, nor cause injury to public or private property, work completed or in progress, or public streets. Disposal shall not cause any interference in the use of streets and roads by the public. Pipes under construction shall not be used for drainage of excavations.

- L. Any deflection of joints in pipe up to twelve-inch (12") diameter shall be within the limits specified by the manufacturer, but not to exceed five degrees or nineteen inches (19") per eighteen feet (18') of pipe length.
- M. Concrete thrust blocks shall be installed on all hydrants, plugs, tees, and bends deflecting $11 \ 1/4$ degrees or more. Concrete thrust blocks shall be used in conjunction with "Mega-Lug" restraining glands or equivalent. Care shall be taken to ensure that concrete will not come into contact with flanges, joints, or bolts. The required area of thrust blocks shall be indicated on plan typicals and approved by the Town Water Department. Concrete shall be placed against undisturbed soil. Wooden side forms or equal shall be provided for thrust blocks. No backfilling shall be allowed until concrete masonry has set sufficiently. Where directed by the Town Water Department or engineer, concrete encasement of the waterline may be made for stream crossings and similar purposes. Where required on the plans or as directed by the Town Water Department or engineer, a concrete cradle shall be used to bolster and strengthen the pipe. The Town Water Department or his designee shall inspect all thrust blocks prior to backfilling.
- N. All trenching safety standards shall be in conformance with all applicable State and Federal guidelines. The contractor shall be solely responsible for any safety citations by State or Federal inspectors.
- O. There shall be no physical connection between the distribution system and any pipes, pumps, hydrants, or tanks that are supplied with water that is, or may be, contaminated.
- P. As necessary, temporary PVC markers shall be supplied at all gate valves, curb boxes, and at the end of water lines to a minimum of twelve inches (12") above finish grade until accepted by the Town Water Department.
- Q. All surplus material and debris shall be removed as the project progresses, leaving all areas clean and presentable.
- R. Unless otherwise required, all paving and sidewalks that may be damaged during construction shall be replaced with the same kind of material that previously existed.
- S. The contractor shall be responsible for proper protection of persons and property on the project. The contractor shall barricade open holes and depressions occurring as part of the work, and post warning lights on adjacent property to or with public access.
- T. Warning lights shall be operated during hours from dusk to dawn and as otherwise requested.
- U. The contractor shall protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, washout, and other hazards created by construction operations.
- V. No water lines shall be installed after November 15 or before April 1 without prior approval of the Town Water Department.

3.02 BACKFILLING

- A. Trenches shall be backfilled to subgrade with, wherever possible, material excavated from the trench, and shall be done only after the approval of the Town Water Department. Material for backfilling shall be free of roots, stumps, and frost. Backfill shall not be placed on frozen material. Materials used for backfilling trenches shall be free of stones measuring more than twenty four (24) pounds. No stones measuring over three inches (3") in the longest dimension shall be placed within one foot (1') of the pipeline being backfilled. Stones found in the trench shall be removed for a depth of at least six inches (6") below the bottom of the pipe. In general, use of blasted rock as trench backfill will not be permitted.
- B. Backfill material shall be tamped in layers around the pipe to a sufficient height above the pipe to adequately support and protect the pipe. Backfill for pipelines shall be placed in six inch (6") lifts, each lift being compacted to not less than 95% of maximum dry density as determined by the AASHTO-T-99 Standard Proctor. If conditions warrant, the backfilling of trenches may be done with mechanical equipment. Particular precautions shall be taken in the placement and compaction of the backfill material in order not to damage the pipe, pipe coating or structure. The backfill shall be brought up evenly. Around valve boxes, the backfill shall be tamped to a distance of four feet (4') on all sides of the box, or to the undisturbed trench face, if less than four feet (4'). Backfilling in all public roadways shall be so compacted as to leave no depression in the road. Additional backfill requirements may apply within State or local Highway Right-of-Ways. All public road surfaces shall be restored to a condition at least equal to that which existed prior to the start of construction. Precautions shall be taken against undue damage to existing surface materials.
- C. No compacting shall be done when the material is too wet to be compacted properly. At such times the work shall be suspended until the previously placed and new materials have dried out sufficiently to permit proper compaction, or such other precautions are taken as may be necessary to obtain proper compaction.
- D. Surplus excavated materials shall be disposed of in a satisfactory manner. Surplus material or spoil shall be removed promptly and disposed of so as not to be objectionable to abutters or the general public.
- E. Trenches that have been improperly backfilled, enclosed or covered before inspection of fittings and joints shall be reopened and re-backfilled at the contractor's expense.
- 3.03 WATER/SEWER SEPARATION
- A. Water mains crossing sewers shall be laid to provide minimum vertical distance of eighteen inches (18") between the outside of the water main and the outside of the sewer line. This shall be the case where the water main is either above or below the sewer. At crossings, one full length of pipe shall be located so both joints will be as far from the sewer as possible. This vertical separation shall be maintained for that portion of the water main located within ten feet (10') horizontally of any sewer it crosses. Water mains must be laid at least five feet (5') horizontally from any existing or proposed storm sewer and ten feet (10') from any existing or proposed sanitary sewer.

C.	When it is impossible to obtain horizontal and vertical separation on new installations, both the water main and sewer main shall be constructed of waterworks material with watertight joints and shall be pressure tested before backfilling. A PVC sleeve may be required for one or both mains in addition to the waterworks material. Lines may also be encased in concrete as required by the Retail Department. No water main shall pass through or come in contact with any part of a sewer manhole. Distribution lines shall not be placed closer than fifty feet (50') horizontal distance from any septic tank or leach field unless approved by the VT Water Supply Rule Provisions under Chapter 21.8.6.4 or the Town Water Department. Force main crossing shall be arranged so that at least one full length of sewer pipe is centered above or below the water line, with the sewer joints as far as possible from the water main standards for a minimum of twenty feet (20') on either side of the crossing. The section constructed to water main standards shall be pressure tested to maintain 50 psi for fifteen (15) minutes without leakage prior to backfilling. In those areas that proper cover cannot be provided, proper insulation shall be installed.	CIVIL ENGINEERING ASSOCIATES. INC. 10 MANSFIELD VIEW LANE, SOUTH BURLINGTON, VT 05403 P: 802-864-2323 FAX: 802-864-2271 web: www.cea-vt.com COPYRIGHT © 2019 – ALL RIGHTS RESERVED DRAWN MAB CHECKED DSM APPROVED DSM CLIENT:
E.	Sewer and waterline separation shall conform to all VT Water Supply Rule requirements, and installed in accordance with the latest edition of the "Ten States Standards — Recommended Standards for Water."	IRELAND DEVELOPMENT, LLC
3.04	TESTING AND DISINFECTION	
Α.	All water mains shall be constructed, tested and disinfected in accordance with AWWA Standards C-600, C-605, C651 and The Vermont Water Supply Rule. All tests shall be conducted by and at the expense of the Contractor.	193 INDUSTRIAL AVENUE WILLISTON, VERMONT 05403
	 The Contractor shall furnish all gauges, testing plugs, caps and all other necessary equipment and labor to perform leakage and pressure tests in sections of an approved length. Each valved section, including hydrant laterals, or a maximum length of 1,000 feet of pipe shall be tested. The Contractor shall provide at his own expense any additional taps to the water line necessary to perform the pressure and leakage test between valves. All didinfection/testing shall be completed by an independent third party unless otherwise approved by the Engineer or local municipality. 	PROJECT: SUNDERLAND
	2. All water required for testing shall be potable. All testing shall be conducted in the presence of the Engineer.	FARMS
	3. The Contractor shall make the necessary provisions to tap the pipe at the high point to release all air and shall plug same after completing the test. Hydrants or blowoffs located at high points may be used for air release in lieu of taps if approved by the Engineer.	COMMUNITY
	4. For the pressure test, the Contractor shall develop and maintain for two hours, 150% of the working pressure, or 200 psi, whichever is greater. Failure to hold within 5 psi of the designated pressure for the two hour period constitutes a failure of the section tested.	SEVERANCE ROAD COLCHESTER, VT
	5. No pipe installation shall be accepted if the leakage is greater than that determined by the following. Maximum allowable leakage will be:	
	$L = \underbrace{SD \sqrt{P}}_{148,000} \text{ or } L = \underbrace{ND \sqrt{P}}_{7,400}$	
	whichever is less	
	 Where: L = allowable leakage, in gallons per hour S = length of pipe tested, in feet D = nominal diameter of the pipe, in inches P = average test pressure during the leakage test, in pounds per square inch (gauge). N = Number of joints in the pipeline tested 	
	All testing shall be conducted in accordance with AWWA C600 (latest edition)	
	 Should any section of pipe fail either the pressure or leakage test, the Contractor shall do everything necessary to locate and repair or replace the defective pipe, fittings, or joints at no cost to the Owner. 	
	 Disinfection: Disinfection of the pipeline shall be directed by the Engineer and at the Contractor's expense. AWWA Standard C-651 shall be used as a basis for the disinfection process. 	DATE CHECKED REVISION
В.	The Engineer or Town Water Department will require as minimum:	
	 Complete flushing of the pipeline to wash out all dirt, debris, etc. which may have accumulated in the pipeline during construction. A reducing agent shall be used at the point of flushing to eliminate the free chlorine residual per the direction of the Town Water Department. 	
	 Following flushing to clean clear water, the Contractor will add chlorine through continuous feed to the entire pipeline volume of water such that the water will have not less than 25 mg/L free chlorine, and let the mixture set for at least 24 hours. 	SITF
	 After the 24-hour duration, the water in the pipeline shall be tested for residual free chlorine and must contain a minimum of 10 mg/L chlorine. If less than 10 mg/L are found, then the disinfection procedure shall be repeated until at least 10 mg/L chlorine residual is indicated by test. 	SPECIFICATIONS
	4. Upon successful completion of step 3 above, the pipeline shall be flushed again until the chlorine concentration in the pipeline is no higher than that prevailing in the supply system. A reducing agent shall be used to eliminate the free chlorine residual in the flushing process per the direction of the Town Water Department.	date drawing number 11/01/2019
C.	After final flushing and before the new water main is connected to the distribution system, two consecutive sets of acceptable samples, taken at least 24 hours apart, shall be collected from the new main, and submitted to the Vermont Health Department for analysis. At least one set of samples	SCALE NONE PROJ. NO. 14134

shall be collected from every 1,000 feet of the new water main, plus one set from the end of the line and at least one set from each branch. All samples shall show the absence of coliform organisms and, if required, the presence of a chlorine residual (AWWA C651-99). If the initial disinfection fails to produce samples which pass the V.S.H.D. requirements for potable drinking water, then the new main shall be reflushed and shall be resampled until satisfactory test results are obtained.

- D. Upon satisfactory results by the Vermont State Health Department, the pipeline may be placed in service. All costs for water, materials, equipment and labor to perform the required testing disinfection, and flushing of the pipeline shall be paid by the Contractor.
- 3.05 SUBMITTAL OF TEST RESULTS
- A. A. The Applicant or Project Engineer shall be responsible for submittal of test results to the Town Water Department. The Applicant or Project Engineer shall also provide a letter to the Town Water Department certifying that the water system has passed all tests, is constructed in accordance with the approved plans, except as may have been modified by approved Change Order, and is in condition to be placed in service. <u>Submittal of all test results shall be required prior to</u> the water main being placed into service.

3.06 FINAL INSPECTION

elevations.

- A. For one year from the date the new system is placed into service, the applicant's developer/contractor will be responsible for any necessary repairs or corrections as part of the project warranty. At the end of a one-year period, an inspection will be performed by the Town Water Department prior to the system owner assuming ownership of any of the lines and appurtenances. The contractor shall correct any punch list items accumulated during the inspection after receipt of this list. Incomplete work on the system shall not be included in the initial inspection, but shall be inspected as the project continues. The contractor shall repair, replace, or retest promptly as directed by the Town Water Department and without further charges, all work equipment, materials or parts, which may fail during the one year warranty period.
- B. A final walk-through inspection shall be conducted by the Town Water Department prior to the water system being accepted for ownership by the system owner. This inspection shall include but not be limited to:
- 1. Valves, hydrants, and curb stops operating properly.
- 2. Valve boxes and covers set plumb and at proper
- 3. Proper hydrant nozzle height above grade.
- 4. Proper hydrant opening direction, nozzle thread, and barrel color.
- 5. Proper distance from the face of the curb of hydrant nozzles.
- 6. Hydrant flags meeting Town Water Department specifications installed on each fire hydrant at the time of installation.
- 7. Static and residual hydrant pressures and flow rates.
- 8. Curb boxes inside ROW, set to grade, containing operating rod, and plumb.
- 9. Tie information and record drawings complete and submitted.
- 10. Material testing results, lab reports, manufacturers' certificates, and leakage test results complete and on file.
- 11. General appearance and restoration.
- 12. Submittal of O&M manuals in hard copy and Adobe Acrobat Reader (.pdf) format.
- 13. Submittal of As-Builts in hard copy format and Auto-CAD.DWG Version 2000 format or newer within 14 days of completion.

3.07 GENERAL INFORMATION

- A. All persons taking water must keep the fixtures and service pipe within their own premises in good repair and fully protected from frost, and must prevent unnecessary leakage of water. The Town Water Department shall not be liable for leakage of hydrants, pipes or fixtures upon the premises of any consumer, nor for obstructions therein by freezing or otherwise, nor for damages resulting from any of the forgoing causes. All leaks that are on the building side of the curb stop will be the owner's responsibility and repaired at the owner's expense.
- B. Water rates shall be collected for all water used until the water is shut off at the curb stop by the Town Water Department. No abatement of water rates will be allowed by reason of disuse, diminished use, or vacancy of premises without proper notice to the Town Water Department.
- C. The Town Water Department or system owner shall not be liable for any injury, loss or damage of whatever nature occasioned by the failure to maintain a constant or uniform pressure in the water mains, or for damages occasioned by or growing out of a stoppage of said water by frost or other cause, or for damage occasioned by or growing out of an insufficient supply of the same, or for accident or damage of any kind caused by or growing out of the use or failure of said water.
- D. No person shall open any hydrant or draw water there from except the Town Water Department personnel or persons under their direction, or the officers or designees of the municipal fire department and members of the fire companies under their direction for fire purposes, or those individuals who have been granted approval on a hydrant use application by the Town Water Department, in which case, all such usage shall be metered. Fines for unauthorized use of any hydrant or connection may be incurred, according to the Rules and Regulations of the Town Water Department.
- E. One curb stop and one water meter shall be installed for each individual dwelling unit, condominium unit, apartment unit, commercial or office occupancy. Exceptions may be permitted in cases where a condominium association signs a

binding agreement to be responsible for all collection of water bills. In cases where condominiums are converted separate apartments, separate curb stops and water me shall be installed for each unit. Town Water Department employees shall install all water meters. Under no circumstances are plumbers or persons other than thos authorized by the Town Water Department permitted to water on or off at the curb stop. The water will not in instance be turned on to any premise for use until the Water Department has suitably attached a meter.

F. The owner of the premises shall be responsible for all wo payments. A change of tenants or premises will not reli the owners from payment of a back bill.

STORM WATER PONDS

PART 1 – GENERAL

- 1.01 SUMMARY
- A. Section includes:
- 1. Construction of storm water detention pond.

PART 2 - PRODUCTS

- A. Compacted Fill/Granular Borrow: The material for the f shall be obtained from the designated areas and shall conform to the requirements of Section 02210 - Site Earthwork. The material shall be free from stumps, woo brush, roots, sod, rubbish, and other matter that may It should be free of stones over 2 inches in diameter wh compacted by hand or mechanical tampers, or over 6 ir in diameter where compacted by rollers or other equipm Frozen material shall not be placed in the fill, nor shall fill material be placed on a frozen foundation.
- B. Stone Fill: Stone fill shall conform to the requirements Type I Stone Fill as specified in Section 02439 - Stone
- C. Riser and Drain Pipe: Riser and drain pipe shall conform the requirements of the Drainage section.

PART 3 - EXECUTION

- 3.01 SITE PREPARATION
- A. The area to be covered by the pond and embankments be cleared of all trees, brush, stumps, roots and other objectionable material. The area to be covered by the embankment and the surface of the borrow area shall t stripped of all grass, roots, organic materials, or other objectionable materials to a depth that will insure the removal of any materials which will prevent bond betwee foundation and the fill. Material cleared shall be dispose in accordance with Section 02110 - Site Clearing. When embankment will be on a hillside, the slope of the origin ground on which the embankments are to be constructe shall be stepped and properly drained as the fill is constructed so that adverse movements of the slopes of occur.
- 3.02 COMPACTED FILL/GRANULAR BORROW
- A. Preparation of Foundation: Upon completion of the clea operation and just prior to placing the fill material on a portion of the foundation, that portion shall be scarified, plowed, or disked to a depth of 3 inches. All objection material exposed by this operation shall be disposed of outside the limits of the fill.
- B. Placing and Spreading Material: The placing and spreadi material shall be started at the lowest part of the sect under construction and the fill constructed in layers of inches. The layers shall slope slightly towards the reser to prevent puddles and provide for faster runoff in case rain. Where possible, the layers shall extend over the en area of the fill. The distribution and gradation of the materials throughout the fill shall be such that there be lenses, pockets, streaks, or layers of material differing substantially in texture or gradation from the surroundin material. The most porous borrow material shall be place on the downstream portions of the embankment.
- C. Compaction: All fill shall be compacted to 95 % maxim density per ASTM D-698.
- D. Limits: The embankment shall be constructed where loc and as detailed in the Contract Plans. Side slope shall vertical to 3 horizontal.
- E. Revisions to the proposed design of the detention pond be necessary if, in the opinion of the Engineer, unsuitabl material is found at the pond location.
- 3.03 SLOPE PROTECTION
- A. Placement: Stone Fill Type I shall be placed at location indicated on the plans to a minimum thickness of 1'-0''one course in a manner that will result in a reasonably graded surface. Care shall be taken in the placing to a displacing of the underlying material. The stones shall placed and distributed so that there will be no accumula of either the larger or the smaller stones. Re-arranger of the stone fill by hand labor or mechanical equipment be required to obtain the specified results.
- 3.04 LANDSCAPING
- A. At completion of grading, slopes, ditches, and all disturbed areas shall be smooth and free of pockets with sufficient slope to ensure drainage. All disturbed areas shall receive a minimum of four inches (4") of topsoil and shall be seeded, fertilized, limed, and mulched in accordance with the followina:
- 1. Seed mixture in all areas shall be urban mix conforming to the table below. For seeding between September 1 and October 1, winter rye shall be used at an application rate of 100 pounds per acre.
- 2. Fertilizer shall be standard commercial grade conforming to the State Fertilizer Law and to the Standards of the Association of Official Agricultural Chemists. Dry fertilizer, if used, shall be applied at the rate of 500 pounds per acre. Liquid fertilizer, if used, shall be applied in a 1-2-1ratio with the minimum rate to include 100 pounds of nitrogen, 200 pounds of phosphate, and 100 pounds of potash per acre.
- 3. Limestone shall conform to all State and Federal

of ed into neters	regulations and to the Standards of the Association of Official Agricultural Chemists. The limestone shall be applied at a rate of one ton per acre as directed.	2.1 SEED
t turn any Town	 Within twenty-four (24) hours of application of fertilizer, lime, and seed, the surface shall be mulched with a hay mulch. Mulch shall be spread uniformly over the area at a rate of two (2) tons per acre. All turf establishment shall be performed in accordance with the Vermont Standard Specifications for Construction, Section 651. 	A. Conservation Seed Mix: Minimum Minimum <u>Kind of Seed Purity Germination Lbs/Acre</u> Creeping Red Fescue 98% 85% 22.5 Tall Fescue 95% 95% 22.5 Red Top 95% 90% 3 Pict of the Table 100 000 0500 0000000000000000000000000
water elieve		Birdsfoot Trefoil 98% 85% 9 Annual Ryegrass 95% 85% <u>3</u> TOTAL = 60
	URBAN MIX GRASS SEED	2.2 INORGANIC SOIL AMENDMENTS
	Percentage Pounds Live Seed <u>Type of Seed</u> <u>By Weight Per Acre</u> 37.50% 45.0 Creeping Red Fescue	A. Lime: ASTM C 602, agricultural limestone containing a minimum of 85 percent calcium carbonate equivalent and as follows:
	37.25% 37.5 Kentucky Blue Grass, Winter Hardy, Perennial Rye	1. Class: T, with a minimum of 99 percent passing through No. 8 sieve and a minimum of 75 percent passing
	31.25% 37.5 (variety Pennfine, Manhattan, or similar varieties)	through No. 60 sieve. 2.3 FERTILIZER
fill	100% 120 pounds live seed per acre	A. Commercial Fertilizer: Commercial—grade complete fertilizer of neutral character, consisting of fast— and slow—release nitrogen, 50 percent derived from natural organic sources of
od,	LANDSCAPE GRADING	urea formaldehyde, phosphorous, and potassium. B. Slow—Release Fertilizer: Granular or pelleted fertilizer
decay. where inches	PART 1 – GENERAL 1.01 SUMMARY	consisting of 50 percent water-insoluble nitrogen, phosphorus, and potassium.
nent. I the	A. Section includes:	2.4 MULCHES
s of e Fill.	 Finish grading; bring rough grade in areas to design elevations as shown on the drawings. 	A. Mulch: Provide air—dry, clean, mildew— and seed—free, hay or threshed straw of wheat, rye, oats, or barley.
rm to	 Topsoil: Work shall consist of furnishing, placing and shaping topsoil, or placing, spreading, and shaping topsoil form stockpiles or stripped areas. PART 2 - PRODUCTS 	B. Compost Mulch: Well-composted, stable, and weed-free organic matter, pH range of 5.5 to 8; moisture content 35 to 55 percent by weight; 100 percent passing through 1-inch sieve; soluble salt content of 2 to 5 decisiemens/m; not exceeding 0.5 percent inert contaminants and free of
	2.01 TOPSOIL	substances toxic to plantings; and as follows:
shall	A. Topsoil shall be loose, friable, reasonably free of admixtures	 Organic Matter Content: 50 to 60 percent of dry weight. PART 3 - EXECUTION .
earth be	of subsoil, free from refuses, stumps, roots, brush, weeds, rocks, and stones 1 1/4 inch in overall dimensions. The	3.1 PREPARATION
en the sed of	topsoil shall also be free from any material that will prevent the formation of a suitable seedbed or prevent seed germination and plant growth. It shall contain not less than three (3) nor more than twenty (20) percent organic matter.	A. Protect structures, utilities, sidewalks, pavements, and other facilities, trees, shrubs, and plantings from damage caused by planting operations.
ere the inal ed	Any material which has become mixed with undue amounts of subsoil during any operation at the source or during placing or spreading will be rejected and shall be replaced by the Contractor with acceptable material.	 Protect adjacent and adjoining areas from hydroseeding and hydromulching overspray.
do not	PART 3 - EXECUTION	Protect grade stakes set by others until directed to remove them.
	3.01 SUBGRADE PREPARATION	B. Provide erosion-control measures to prevent erosion or
earing any	A. Clean subgrade of all stumps, stones, roots, trash or other materials which might hinder proper tillage or spreading.	displacement of soils and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways. C. Newly Graded Subgrades: Loosen subgrade to a minimum
d, nable	B. All surfaces on which topsoil is to be placed shall be graded to a reasonably true surface and scarified by raking, discing or other approved means to a minimum depth of two inches before placing topsoil.	depth of 4 inches. Remove stones larger than 2 inches in any dimension and sticks, roots, rubbish, and other extraneous matter.
ding of tion	3.03 PLACING TOPSOIL	 Apply fertilizer directly to subgrade before loosening. a. Delay mixing fertilizer with planting soil if planting will
6 rvoir	A. Minimum final depth of topsoil shall be 4 inches.	not proceed within a few days. b. Mix lime with dry soil before mixing fertilizer.
e of entire e no	 B. Place topsoil when seeding operations can closely follow spreading operations. Use topsoil in relatively dry state. C. Topsoil shall be spread and shaped to the lines and grades 	D. Finish Grading: Grade planting areas to a smooth, uniform surface plane with loose, uniformly fine texture. Grade to within plus or minus 1 inch of finish elevation. Roll and rake,
ng aced	shown on the plans, or as directed by the Engineer. The depth stated in the contract to which the topsoil is to be placed is that required after final rolling of the material has	remove ridges, and fill depressions to meet finish grades. Limit finish grading to areas that can be planted in the immediate future.
num	taken place. All stones, roots and debris over 1¼ inch in diameter along with any sodding weeds and other undesirable material shall be removed.	E. Moisten prepared areas before planting if soil is dry. Water thoroughly and allow surface to dry before planting. Do not create muddy soil.
ocated I be 1	D. After shaping and grading, all trucks and other equipment shall be excluded from the topsoiled area to prevent excessive compaction. The Contractor shall perform such	F. Before planting, restore areas if eroded or otherwise disturbed after finish grading.
d may	work as required to provide a friable surface for seed germination and plant growth prior to seeding.	3.2 APPLICATION RATES
ble	E. It shall be the Contractor's responsibility to restore to the line, grade and surface all eroded areas with approved material and to keep topsoiled areas in acceptable condition	A. When a soil test is not available, the following minimum amounts should be applied:
ons	until the completion of the work.	 Agricultural limestone: 2 tons/acre. Nitrogen (N): 50 lbs./acre.
)"in / well	SEEDING	 Nitrogen (N): 50 lbs./acre. Phosphate: 100 lbs./acre.
avoid be	PART 1 – GENERAL	4. Potash: 100 lbs./acre.
llations ement	1.1 Section Includes:	a. This is the equivalent of 500 lbs./acre of 10-20-20
t may	A. Seeding.	fertilizer or 1,000 lbs./acre of 5-10-10.
	 Furnish all labor, materials and equipment to complete all seeding work as shown on the drawings and specified herein. 	5. Hay mulch: 2 tons/acre.
rhad		3.3 SEEDING

2. Except where otherwise shown or specified, the Contractor

been disturbed by the Contractor's operations.

Planting Restrictions: Seeding and initial fertilizing shall be

when the ground is frozen, excessively wet, or otherwise

with initial maintenance periods to provide required

maintenance from date of Substantial Completion.

done between May 1st and September 15th unless otherwise

authorized. Seeding shall not be done during windy weather or

untillable. If seeding is done during July or August, additional

mulch material may be required. Coordinate planting periods

A. Product Data: For each type of product indicated.

shall seed all areas where new contours are shown on the

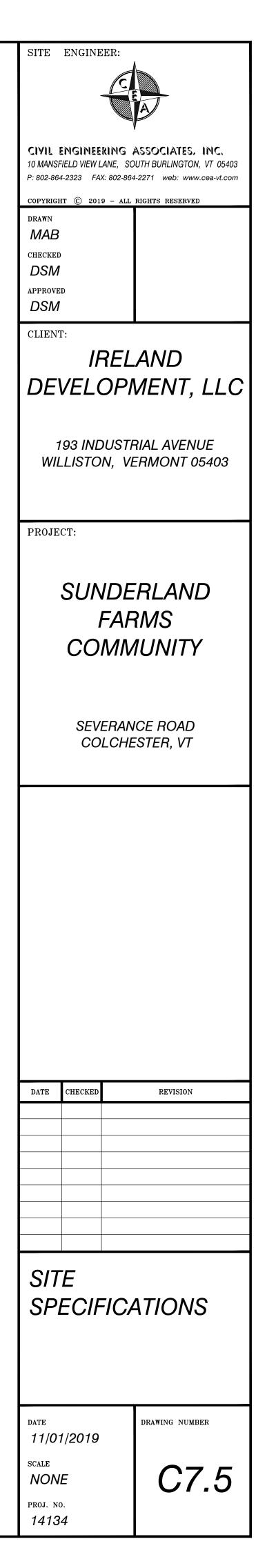
drawings and all areas where existing ground cover has

A. Sow seed with spreader or seeding machine. Do not broadcast or drop seed when wind velocity exceeds 5 mph. Evenly distribute seed by sowing equal quantities in two directions at right angles to each other.

1. Do not use wet seed or seed that is moldy or otherwise damaged.

- 2. Do not seed against existing trees. Limit extent of seed to outside edge of planting saucer.
- B. Rake seed lightly into top 1/8 inch of soil, roll lightly, and water with fine spray.
- C. Protect seeded areas with slopes exceeding 1:3 with erosion-control blankets installed and stapled according to manufacturer's written instructions.
- D. Protect seeded areas from hot, dry weather or drying winds

PART 2 – PRODUCTS


1.3 PROJECT CONDITIONS

1.2 SUBMITTALS

by applying mulch within 24 hours after completing seeding operations. Soak areas, scatter mulch uniformly to a depth of 3/16 inch, and roll surface smooth.

3.4 HYDROSEEDING

- A. Hydroseeding: Mix specified seed, fertilizer, and fiber mulch in water, using equipment specifically designed for hydroseed application. Continue mixing until uniformly blended into homogeneous slurry suitable for hydraulic application.
- 1. Mix slurry with fiber-mulch manufacturer's recommended tackifier.
- 2. Apply slurry uniformly to all areas to be seeded in a one-step process. Apply slurry at a rate so that mulch component is deposited at not less than 1500-lb/acre dry weight, and seed component is deposited at not less than the specified seed-sowing rate.
- 3.5 MAINTENANCE
- A. Maintain and establish seeding by watering, fertilizing, weeding, mowing, trimming, replanting, and other operations. Roll, regrade, and replant bare or eroded areas and remulch to produce a uniformly smooth lawn. Provide materials and installation the same as those used in the original installation.
- 1. In areas where mulch has been disturbed by wind or maintenance operations, add new mulch and anchor as required to prevent displacement.
- 2. Begin maintenance immediately after each area is planted and continue until acceptable lawn is established, but for not less than the following periods:
- a. Seeded Areas: 90 days from date of Substantial Completion.
- b. When initial maintenance period has not elapsed before end of planting season, or if seeding is not fully established, continue maintenance during next planting season.
- 3.6 SATISFACTORY CONDITIONS
- A. Installations shall meet the following criteria as determined by Engineer/Owner:
- 1. Satisfactory Seeded Area: At end of maintenance period, a healthy, uniform, close stand of grass has been established, free of weeds and surface irregularities, with coverage exceeding 90 percent over any 10 sq. ft. and bare spots not exceeding 5 by 5 inches.
- B. Use specified materials to reestablish area that do not comply with requirements and continue maintenance until areas are satisfactory.
- 3.7 CLEANUP AND PROTECTION
- A. Promptly remove soil and debris, created by work. Clean wheels of vehicles before leaving site to avoid tracking soil onto roads, walks, or other paved areas.
- B. Erect temporary fencing or barricades and warning signs as required to protect newly planted areas from traffic. Maintain fencing and barricades throughout initial maintenance period and remove after lawn is established.
- C. Remove nondegradable erosion-control measures after grass establishment period.

CIVIL ENGINEERING ASSOCIATES, INC.

10 Mansfield View Lane South Burlington, VT 05403 Phone: 802-864-2323 Fax: 802-864-2271 E-Mail: dmarshall@cea-vt.com

November 5, 2019

Ms. Allison Murphy, P.E., Division Engineer Vermont Department of Environmental Conservation Drinking Water and Groundwater Protection Division 1 National Life Drive, Main 2 Montpelier, Vermont 05620-3522

Re: Request for Public Water System Permit to Construct Ireland Development, Inc. – Sunderland Farms PUD Severance Road, Colchester, VT Engineer's Report

Dear Ms. Murphy:

We have created the Engineer's Report which follows the numbering system found in Appendix A of the Vermont Water Supply Rule - Chapter 21. This information specifically covers the hydraulic analysis associated with the proposed expansion of the existing municipal distribution system.

In support of this application we have enclosed a site utility plan, details and specifications which show the proposed system improvements and services for the proposed project.

1.2.1 General Information:

- a) Name and Address of Official Applicant and future Owner: Ireland Development, Inc.
 193 Industrial Avenue Williston, Vermont 05495
- b) Identification of Area:

The area is located on Severance Road in Colchester and is a ¹/₄ mile east of the intersection of Severance Road and Route 2. The project area is depicted on the attached design plans and attached orthophoto plan (Attachment 1).

c) Existing Water Works:

There is a newly constructed (by Colchester Fire District #3) 12" HDPE Water Main located along Severance Road with water being distributed by the Colchester Fire District #3.

d) Letter of Allocation:

This proposed project will provide potable water to a mixed use project including multi-unit office buildings, restaurant, offices and the like. These design flows for the project are:

							Building 6 (3 story - 46,900 sf					
	Severance	е н	koad	PUD			3 1-Bedroom Units	Х	135	*GPD/Unit =	405	
	Water De	gn F	lows			32 2-Bedroom Units	х	270	*GPD/Unit =	8,640		
	Severa		-				Building 7 (43,940 sf - 32 residential units)					
	14-4	۱ug	-18				4 1-Bedroom Units	x	135	*GPD/Unit =	540	
		- 0					25 2-Bedroom Units	х	270	*GPD/Unit =	6,750	
<u>No.</u>	<u>Description</u>		<u>GPD</u>	<u>Flow/Unit</u>		GPD	3 3-Bedroom Units	x	405	*GPD/Unit =	1,215	
Buil	ding 1 (5,540sf office)						Building 8 (4,275 sf daycare)					
22	Employees	х	15	GPD/Empl.	=	330			15		855	
10	% Low Flow Reduc. Credit					(33)	57 People	x	12	GPD/Perso =		
Build	ding 2 (4,030 sf office)						10 % Low Flow Reduc. Credit				(86)	
	Employees	x	15	GPD/Empl.	=	240	Buildings 9 (16,180 sf office)					
	% Low Flow Reduc. Credit	~	15	Gi D/Empi.	_	(24)	66 Employees	х	15	GPD/Empl. =	990	
						(24)	10 % Low Flow Reduc. Credit				(99)	
	ding 3 (12,400 sf Retail/13,						Building 10 (8,130 sf office)					
16	1-Bedroom Units	х		*GPD/Unit		2,160	32 Employees	x	15	GPD/Empl. =	480	
50	Employees	х	15	GPD/Empl.	=	750		^	13	GFD/Linpi		
10	% Low Flow Reduc. Credit					(75)	10 % Low Flow Reduc. Credit				(48)	
Build	ding 4 (4,050sf restaurant)						Building 11 (17,920 sf resident	ial)				
	Seats	х	30	GPD/Unit	=	2,250	45 3-Bedroom Units	х	405	*GPD/Unit =	18,225	
10	% Low Flow Reduc. Credit					(225)	Town Houses (58,460 sf reside	ntia	al)			
Buile	ding 5 (3 story - 47,700sf re	esid	lential)			30 3-Bedroom Units	x	405	*GPD/Unit =	12,150	
4	1-Bedroom Units	х	135	*GPD/Unit	=	540		т	ntal D	esign Flow	64,571	
32	2-Bedroom Units	х	270	*GPD/Unit	=	8,640	* Low Flow Reductions have bee	-		-	,	
							design values	=11111	iegi a tet	a mo the per be		

The Town of Colchester has approved the water allocation request and it is attached in this submittal. (See Attachment 2).

e) Fire Protection:

Fire protection will be provided by installing 3,600± feet of 8" C900 PVC water main into the project site from the newly installed 12" HDPE water main located along Severance Road.

Areal fire protection will be provided through the installation of twelve additional hydrants to protect and provide a connection in the event of a fire. See attachment 1 for general distribution system layout and the design plans for additional detail. Ms. Allison Murphy, P.E. Page 3 of 6 November 5, 2019

1.2.2 Extent of Water Works System:

a) Nature and extent of area to be served:

The area to be served includes the Planned Unit Development which consists of residential and commercial buildings.

The specifics for the project distribution system calls for the installation of $3,600 \pm LF$ of 8" C900 PVC water main and $330 \pm LF$ of 6" C900 PVC water main; twelve new hydrants; and $\frac{3}{4}$ " to 1" copper services for 30 residential units per the attached plans.

b) Provisions for extending water system:

Proposed Expansion – The project calls for a new branch off the Severance Road water main.

Future Expansion – There is an 8" C900 PVC stub to be installed for future connection to the Balaki Parcel.

c) Future requirements:

No future requirements have been identified for this project as this program represents full build-out potential of the property.

1.2.3 Alternate Plans:

No alternate plans for the supply of these proposed users was undertaken other than the use of drilled wells which was deemed imprudent base on the ready availability of the existing municipal water supply.

1.2.4 Design Criteria:

a)- c) Not applicable.

d) Average and maximum day demands:

The average day demand is estimated at 64,571 GPD (please see computation in Section 1.2.1(d) above)

Based on a factor of two, the maximum daily demand would be approximately 129,142 GPD.

Ms. Allison Murphy, P.E. Page 4 of 6 November 5, 2019

e) Existing and proposed services:

There are no existing services at this location.

The proposed project will create new Planned Unit Development with commercial and residential aspects and service lines to each building.

f) Fire Fighting Requirements:

The minimum required fire flows for this project is 1,551.3 GPM (See Attachment 6). The calculated available fire flow is 2,292 GPM (8in line) (See Attachment 5).

g)- I) Not applicable.

1.2.5 Soil and Groundwater Conditions:

a) Character of the soil for water main installation:

The existing soils are mapped by the Soil Conservation Service as being Agawam fine sandy loam, 0 to 5 percent slopes; Belgrade and Eldridge soils, 0 to 3 percent slopes; Hartland very fine sandy loam, 2 to 6 percent slopes; Hartland very fine sandy loam, 25 to 60 percent slopes; Hinesburg fine sandy loam, 0 to 3 percent slopes; Munson and Raynham silt loams, 2 to 6 percent slopes. (See Attachment 3).

b) Soil conditions for proposed structures:

The soil conditions for the proposed structures are similar to those to be experienced in the installation of the water mains.

c) The water table varies from one foot to three feet below the surface. Due to the presence of fine grained materials and a perched water table, the springtime water table is close to the surface.

1.2.6 Water Use Data:

- a) Not applicable.
- b) **Present consumption and project demands:** None. The additional flows are estimated at 64,571 GPD.
- c) Unusual Occurrences: None.

Ms. Allison Murphy, P.E. Page 5 of 6 November 5, 2019

1.2.7 Hydraulic Analysis:

Since the project is proposing to tie-in to the existing 12" Colchester Fire District #3 water main located on Severance Road, water availability did not appear to be an issue when offered by the Fire District.

The water distribution system is served by a municipal storage tank at Water Tower Hill in Colchester. The ability of the proposed expansion of the distribution system to serve the Sunderland Farm Community project is premised on the hydraulic modeling completing by the Colchester Fire District #3's engineer, Krebs & Lansing. (See attachment 4).

In this situation, the performance of the Town's new 12" HDPE water main project was modeled using the baseline information from the Fire District. Is a worst case scenario, an analysis assuming a dead-end feed was undertaken to determine what the available fire flow would be at the most remote portion of the site.

The analysis showed that the existing and proposed extension of the system was capable of providing 2,282 GPM while maintaining a minimum residual pressure in the surrounding system of at least 20 PSI (See Attachment 5).

1.2.8 Fire Flow Requirements:

a) **Requirements of the Insurance Services Office:**

The minimum required fire flows for this project, based on ISO requirements for one and two family dwellings with separation distances of 11 to 30 feet is 1,551 GPM (See Attachment 6). The calculated available fire flow is 2,882 GPM (See Attachment 5).

1.2.9 Sewerage System Availability:

Sewerage for this project is readily available along US Route 7. The proposed sewer for the PUD will connect to an existing manhole present on the east side of Route 7. The buildings will be service by a 6-8" SDR 35 PVC sewer services that will all collect into an 8" sewer main to Route 7.

1.2.10 Source of Water Supply

The existing water supply will be from the Colchester Fire District #3 distribution system.

Ms. Allison Murphy, P.E. Page 6 of 6 November 5, 2019

1.2.11 Proposed Treatment Processes

There are no proposed treatment processes associated with this application.

1.2.12 through 1.2.16 Not Applicable.

1.3 Plans for Construction:

Enclosed for your review are the proposed utility plans depicting the proposed improvements.

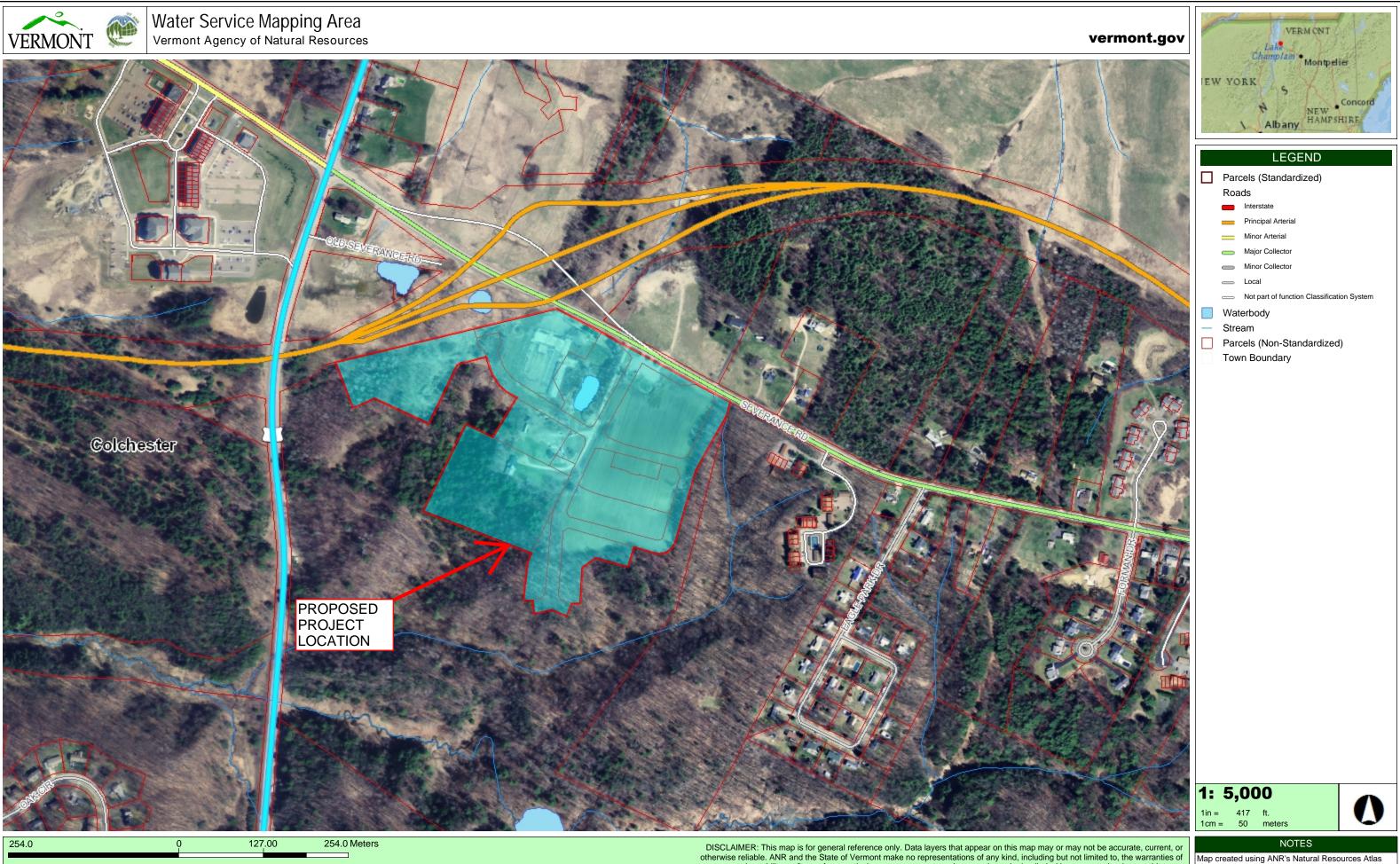
1.4 Design Specifications:

The design specifications for this project are included in the design plan set associated with this submission.

This completes the "Engineers Report" for the proposed construction of the proposed expansion of the Town of Shelburne distribution system. If you should have any questions, please feel free to contact me at 864-2323 x310.

Respectfully,

David S. Marshall, P.E. Project Engineer


Enclosures:

Site Utility Plan, details and specifications Attachment 1 – Water Service Area Mapping Attachment 2 – Water Distribution System – Ortho 1-5000 Attachment 3 – Soils Mapping w Water Mains Attachment 4 - Hydrant Flow Test Results Attachment 5 - Hydraulic Analysis Fire Flow Availability Attachment 6 – Required Fire Flow

cc: (w/ enclosures) CEA File 14134.00 (w/ enclosures)

P:\AutoCADD Projects\2014\14134\3-Permitting\2-State Applications\Water Supply\0 - Engineers Report.doc

WGS_1984_Web_Mercator_Auxiliary_Sphere © Vermont Agency of Natural Resources. July 17, 2018

DISCLAIMER: This map is for general reference only. Data layers that appear on this map may or may not be accurate, current, or otherwise reliable. ANR and the State of Vermont make no representations of any kind, including but not limited to, the warranties of merchantability, or fitness for a particular use, nor are any such warranties to be implied with respect to the data on this map. THIS MAP IS NOT TO BE USED FOR NAVIGATION

COLCHESTER FIRE DISTRICT #3

428 Main Street Colchester, Vermont 05446 802-878-4337

October 1, 2019

Ms. Robin Jeffers S.D. Ireland Companies 193 Industrial Avenue Williston, VT 05495

Re: Sunderland Farms Community Water Storage Capacity – Ability To Serve

Dear Ms. Jeffers,

Colchester Fire District #3 (CFD#3) has sufficient water storage capacity to accommodate the additional demand required by your proposed development - Sunderland Farms Community at Severance Corners. Your request for this proposed development is 64,571 gallons per day.


A 12" water main is currently under construction through Sunny Hollow that will directly connect the Severance Corners area to water storage tanks on Water Tower Hill. Our present hydraulic model indicates that once completed, this water main will substantially reinforce the water system infrastructure that serves Severance Corners and beyond.

Please note, that as of July 2018 an impact fee was adopted for all future development in CFD#3 requiring water allocations, to assist in deferring the cost of debt incurred as a result of (water system) capital improvements. This was previously discussed with Patrick O'Brien (SD Ireland). Payments to CFD#3 can be phased to coincide with your development schedule (amounts to be determined at that time).

This water storage capacity letter is good for three (3) years from the date signed. If this letter is not filed with the appropriate agencies, or if the necessary permits are not obtained within this time period, your water storage capacity allocation will become void and necessitate reapplication at that time. Also, any changes in water demand rates or proposed property utilization that alters the demand, will also require a revised allocation request application. Please contact me if you have additional questions.

Sincerely, For Marianne Terrien

Clerk/Treasurer Colchester Fire District #3

1 - 18	6	CFB # 3 - Sunderand Houses	
2-6	17259	FLOW = 1,500 gpm hydrant FLOW AT HEDRANT #235 WATER TOWER HILL TANK = WATER ELEVATION AT 492.7'	
Hollow		NO IMPROVENTS TO SO. OAK CIREE NO IMPROVENTS TO BIE 7/ BOOSEVELT	· · · · · · · · · · · · · · · · · · ·
N WW			RESIDUAL PRESSURE AT HYDRANT \$236
N N	N75	MODEL CONDITION STATIC	HYDRANT - 256
UOB CAD #3 SHEET NO. CALCULATED BY	NE -	EXISTING CONDITIONS	- 25.68-
JOB. SHEE	SCAL	16" (12" 1D) HOPE PIPE THROUGH HOLLOW	61.55
iNC.		14" (10.7"10) HOPE PIPE THROUGH HOLLOW 12" (9.75"10) HOPE PIPE THROUGH HOLLOW	7 57.86
KREBS & LANSING NSULTING ENGINEERS, INC. 164 Main Street Ste. 201 COLCHESTER, VERMONT 05446 2) 878-0375 Fax (802) 878-9618	insing.con		51.70
BS & LA NG ENGI ain Street TER, VERN	rebsandla	10" (8.2" ND) HOPE PIPE THROUGH HOLLOW designed. B" (6.6" ID) HOPE PIPE THROUGH HOLLOW	39.73
CONSULTING CONSULTING 164 Main (COLCHESTER (802) 878-0375	email@l		
CON: (802)			

HYDRANT FLOW TEST DETERMINATION OF AVAILABLE HYDRANT FLOWS

	PROJECT: LOCATION: DATE:	Sunderland Farms COLCHESTER, VERMONT November 5, 2019						
= Location for manu	al input of information	on.						
HYDRANT FLOW TEST DATA								
Flowed Hydrant Location Flow Rate (GPM)	Hydrant 235 1500							
Measured Point of Sunderland E Static Pressure (PSI) Residual Pressure (PSI) Approx. ground elevation (FT)	Shea Drive and Se 69.44 57.86 314	everance Road Intersection						
DISTRIBUTION SYSTEM INFO	RMATION							
Dia. of water main at Sunderland Estimated C Value for line Number of Directions flow is cor Distance from CFD#3 to Sunder	ning from	9.75 150 1						
Length of water main from Sund Diameter of the water main exte Estimated C Value for this line Approx. ground elevation (FT)		Hydrant near Condos on South end of site (FT) 10 150						
Minimum required pressure for System (Hydrant on dead end) at design point (PSI) 20								
HYDRAULIC CALCULATIONS Based on the Hazen-William rel	ationship of :	$\frac{Qf}{Qr} = \frac{K(hf)^{0.54}}{K(hr)^{0.54}} = \frac{(hf)^{0.54}}{(hr)^{0.54}}, (Eq. 1)$						
the amount of flow available will be dependent on the allowable reduction in pressure (at the measured hydrant) in comparison to the amount of pressure drop experienced at the measured hydrant.								
ESTIMATED AVAILABLE FLOV	V (GPM)	2857						

Based on the estimated flow, the available pressure drop at the measured hydrant would be:

Static pressure:	69.44 PSI
 Minimum pressure to be maintained at design point Pressure loss in the water main 	20.00 PSI
 Pressure loss in the water main extension up Shea Drive to Hyd Elevation Adjustment 	13.20 PSI <u>-1.95</u> PSI
AVAILABLE PRESSURE DROP	38.19 PSI
AVAILABLE FLOW (Eq. 1)	2857 GPM

Note: For program users, the estimated flow should be adjusted until the available flow equals the estimated flow.

FIRE FLOW REQUIREMENTS

			RVICES OFFICE METHOD	
	LC	ROJECT: DCATION: ATE:	SUNDERLAND FARMS COLCHESTER, VERMONT November 5, 2019	
= Location to ma	nually input information			separated by Fire Resistant siding and 2- Hr Doc
F = 1.0 FOR CC F = 0.8 FOR CC F = 0.8 FOR CC F = 0.6 FOR CC	DNSTRUCTION CLASS 1 (DNSTRUCTION CLASS 2 (DNSTRUCTION CLASS 3 (DNSTRUCTION CLASS 3 (DNSTRUCTION CLASS 4 (DNSTRUCTION CLASS 5 (DNSTRUCTION CLASS 6 (E AREA The effective area is the to	FRAME) JOISTED MAS(NONCOMBUST MASONRY, NC MODIFIED FIRI FIRE RESISTIN	FIBLE) ONCOMBUSTIBLE) E RESISTIVE) VE) area of the largest floor	/25 separated by Firewall
	 in the building plus the folle + For buildings of constru + For buildings of constru 	ction class 1-4,		
Maximum Ci va	Class 2, 3, 4 and 5 600	g: 10 gpm 10 gpm 10 gpm		
For this project, F = Effective Area	1.5 Wood Frame First floor area = Remaining floor area =	1,9	950 SF 950 SF	
Ai = Ci = Ci =	Ro	nimum Ci = 500 ound to the near		
	1,500 gpm			
OCCUPANCY FACTOR (Oi)				
Combustibility Cla C-1 Noncombust C-2 Limited Com C-3 Combustible C-4 Free Burning C-5 Rapid Burnin	ible 0.75 bustible 0.85 Re 1.00 1.15	actor (OI)		
See Figures 1-1 a Classification 3 (nd 1-2 for typical occupant (combustible)).	cy classifications	s (i.e Supermarkets are	
Building Occupa	ncy Factor =	0.85		
:: EXPOSURES (Xi) and COM	MUNICATION (Pi) FACTO	RS		
•	nd communications factors uildings on the needed fire t		ence of exposed and	
A value for (Xi + F	Pi) shall be developed for ea	ach side of the I	building as follows:	
(X · D): 10 ·	avera of (Vi + Di) for each of	مام		

EXPOSURE FACTOR (Xi) Semiprotected (Semi) or Unprotected (Ft) Distance Length*Height of facing Wall of Openings (UO) or Blank Wall to the Exposure Exposed Construction Class Exposed Factor Building Building Xi North Side East Side >100 0 >100 Semi 0 South Side >100 0 West Side 25 840 0.25 None 2

The Length-Height factor is the length of the wall of the exposed building, in feet, times its height in stories.

COMMUNICATIONS FACTOR (Pi)

	Type of										
Protection of			Fire R	lesistive, N	loncombusti	ble	e, or	Co	s with	Commun.	
	Passageway	Slow Burning Communications					Combustible Construction			Factor	
Openings			OPEN	ENCLOSED DISTANCE			OPEN ENCLOSED DISTANCE (PI)			(PI)	
North Side	NA										0
East Side	NA										0
South Side	NA										0
West Side	NA										0

PROTECTION OF PASSAGEWAY OPENINGS

(X + P)i = 1.0 + sum of (Xi + Pi) for each side

TYPE	DESCRIPTION							
UN	Unprotected							
A	Single Class A fire door at one end of passageway							
В	Single Class B fire door at one end of passageway							
AA	Single Class A fire door at each end or double class A fire doors at one end of passageway							
BB	Single Class B fire door at each end or double class B fire doors at one end of passageway							
NA	Not Applicable							
Calculated Exposure and Communications Factor								
(X + P)i =	1.25							

NEEDED FIRE FLOW 0.85 0 0 1,460 l

1,460	0.65	0	0
NFF = (Ci)(Oi)(1+	-(X + P))i =	1	551.3 GPM

Sunderland Woods Community

Lot Summary

Novermber 4, 2019									
LOT NUMBER	ARE			LOT COVERAGE (S.F.)					
	S.F.	ACRES	BUILDING	OVERALL	FRONT YARD				
1	11,326	0.26	0	0	0				
2	14,375	0.33	0	0	0				
3	27,617	0.63	0	0	0				
3A	5,663	0.13	0	0	0				
4	9,148	0.21	0	0	0				
4A	54,014	1.24	0	0	0				
4B	15,246	0.35	0	1,153	1,153				
5	22,651	0.52	0	0	0				
5A	20,038	0.46	0	0	0				
5B	12,632	0.29	0	76	76				
6	24,394	0.56	0	0	0				
6A	14,810	0.34	0	168	168				
7	9,583	0.22	0	0	0				
8	11,761	0.27	0	0	0				
9	10,454	0.24	0	0	0				
10	7,405	0.17	0	0	0				
11	10,454	0.24	0	0	0				
12	11,761	0.27	0	0	0				
13	8,712	0.20	0	0	0				
14	10,890	0.25	0	0	0				
15	9,583	0.22	0	0	0				
16	8,276	0.19	0	0	0				
17	109,771	2.52	0	0	0				
17A	4,356	0.10	0	0	0				
18	10,890	0.25	0	0	0				
18A	5,663	0.13	0	0	0				
19	19,166	0.44	0	0	0				
19A	37,462	0.86	0	0	0				
20	12,197	0.28	0	0	0				
21	17,860	0.41	0	17	17				
21A	68,825	1.58	0	2,252	1,325				
21B	89,298	2.05	0	0	0				
22	27,878	0.64	0	0	0				
23	43,560	1.00	0	2,762	0				
23A	4,792	0.11	0	0	0				
23B	60,984	1.40	0	10,613	570				
24	385,942	8.86	0	10,964	0				
24A	7,841	0.18	0	0	0				
24B	27,443	0.63	0	0	0				

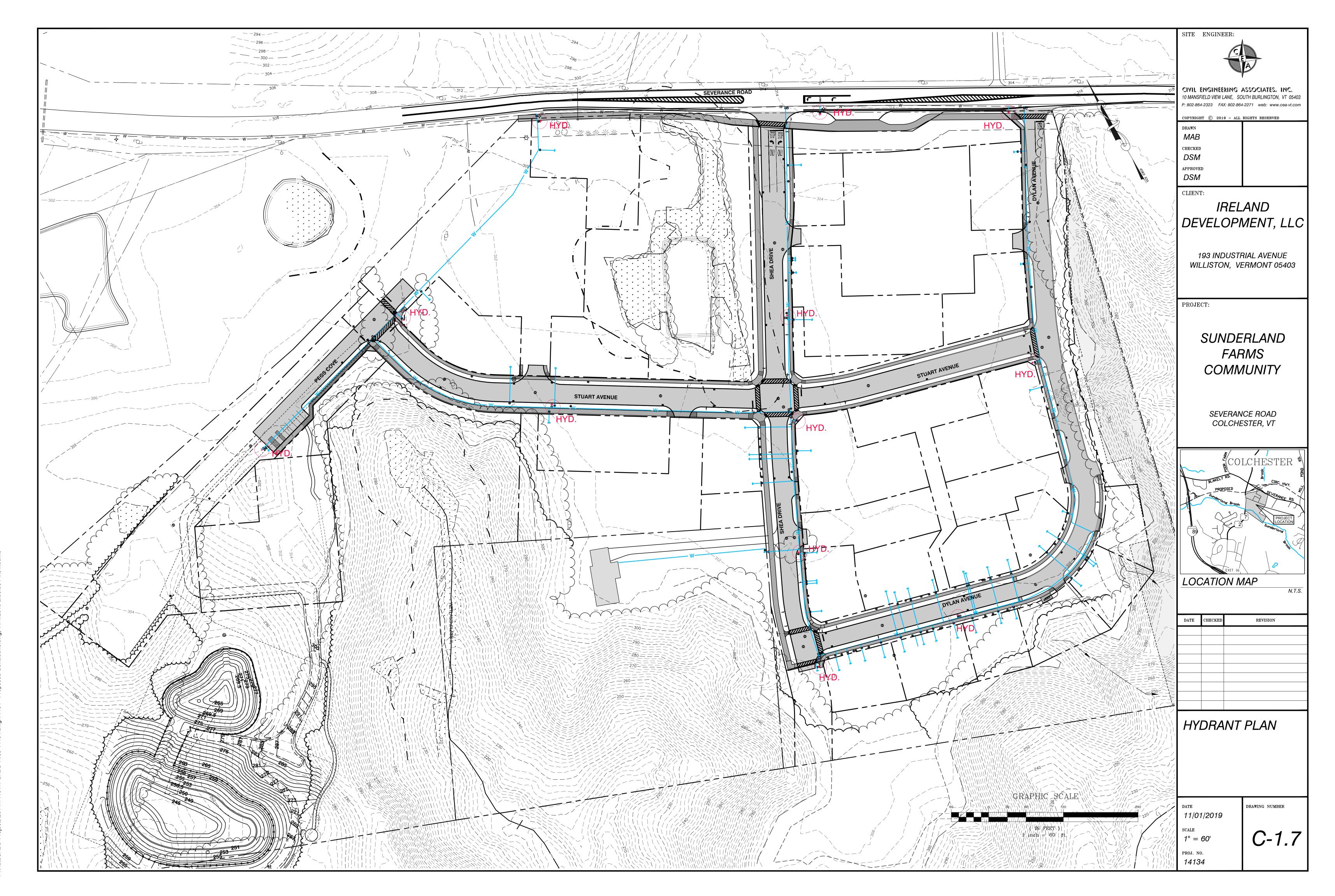
CFD#3 - WATER SYSTEM REVIEW

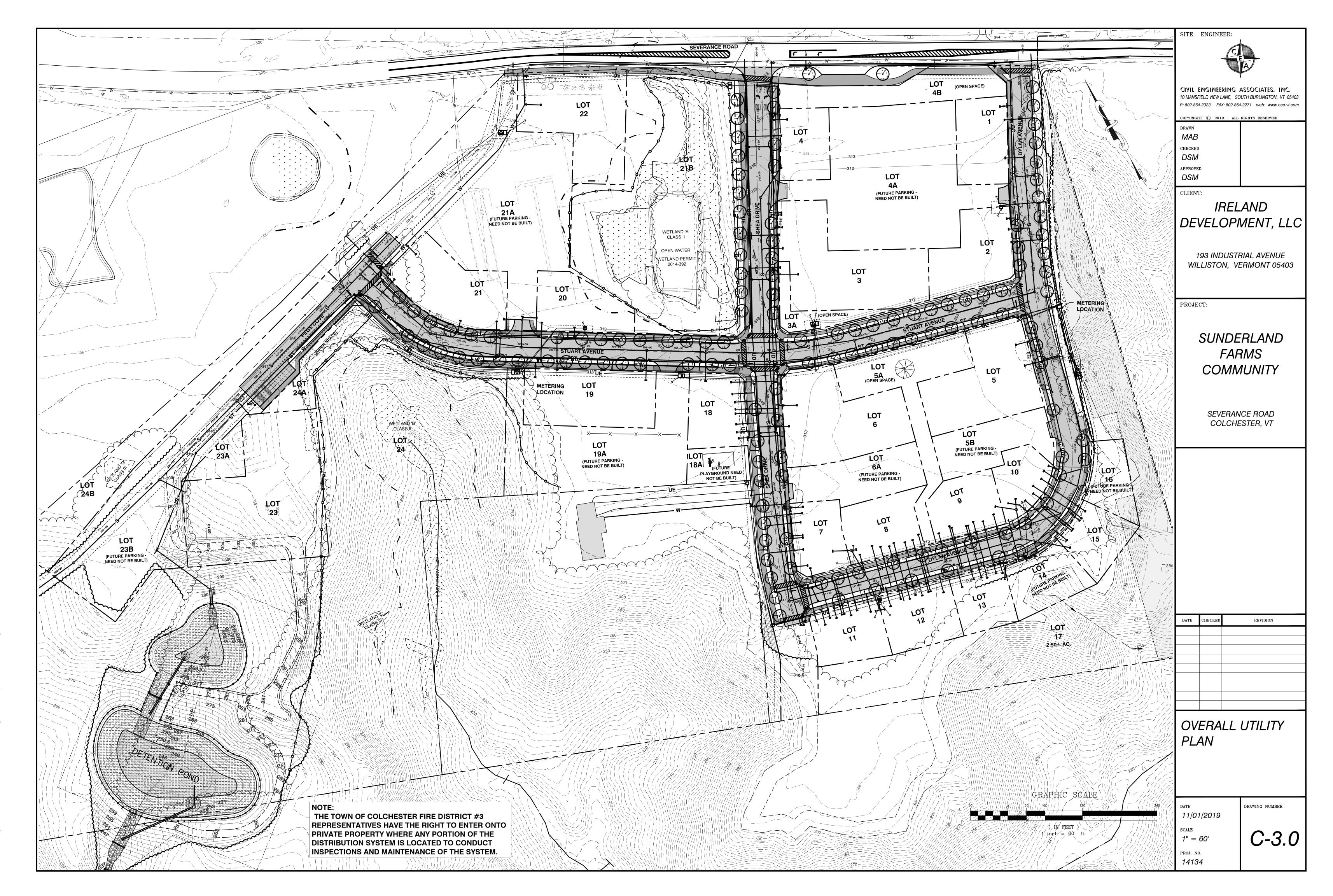
PROJECT: Sunderland Farms Community OWNER: Ireland Development LLC

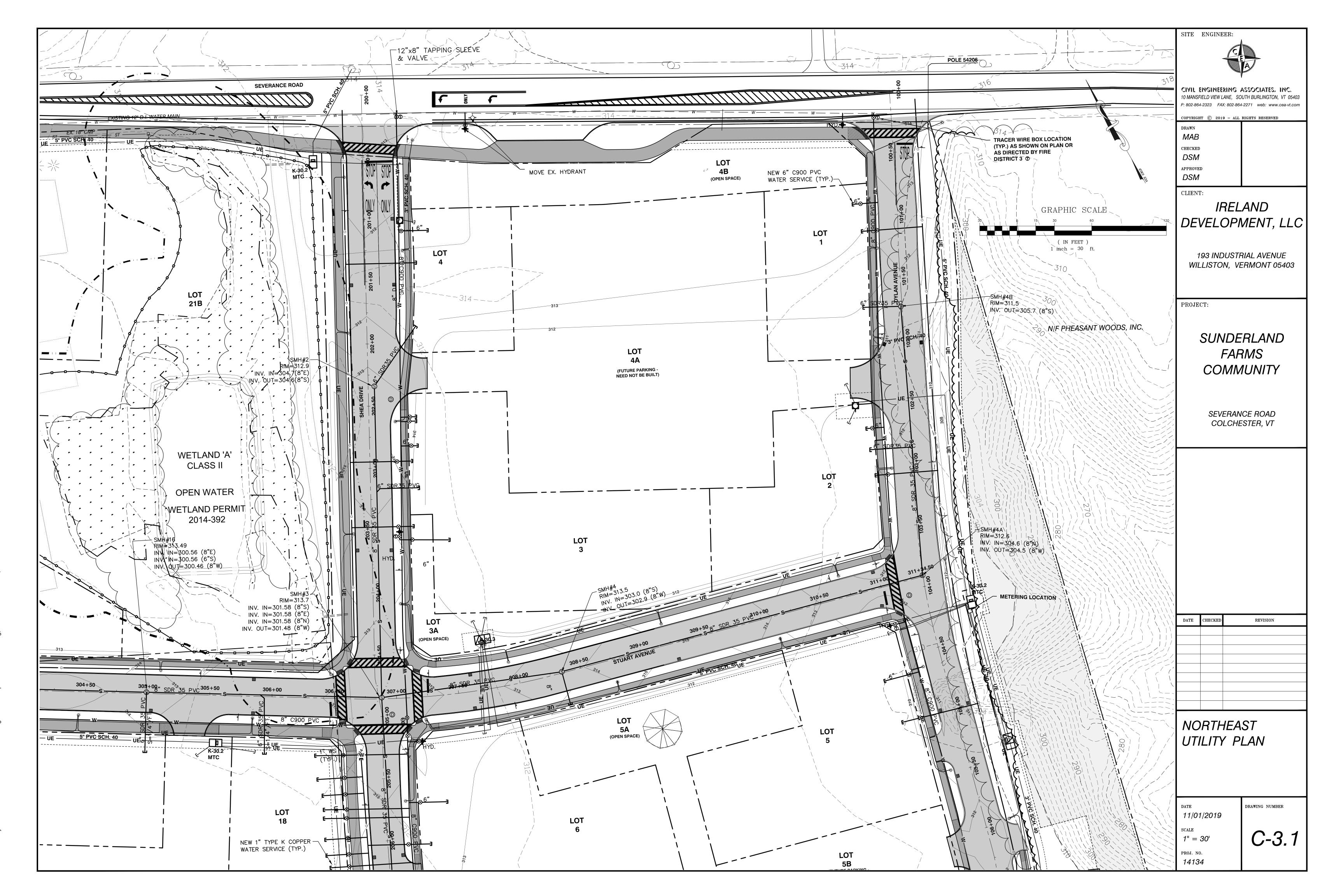
DATE REC'D: 9/3/19

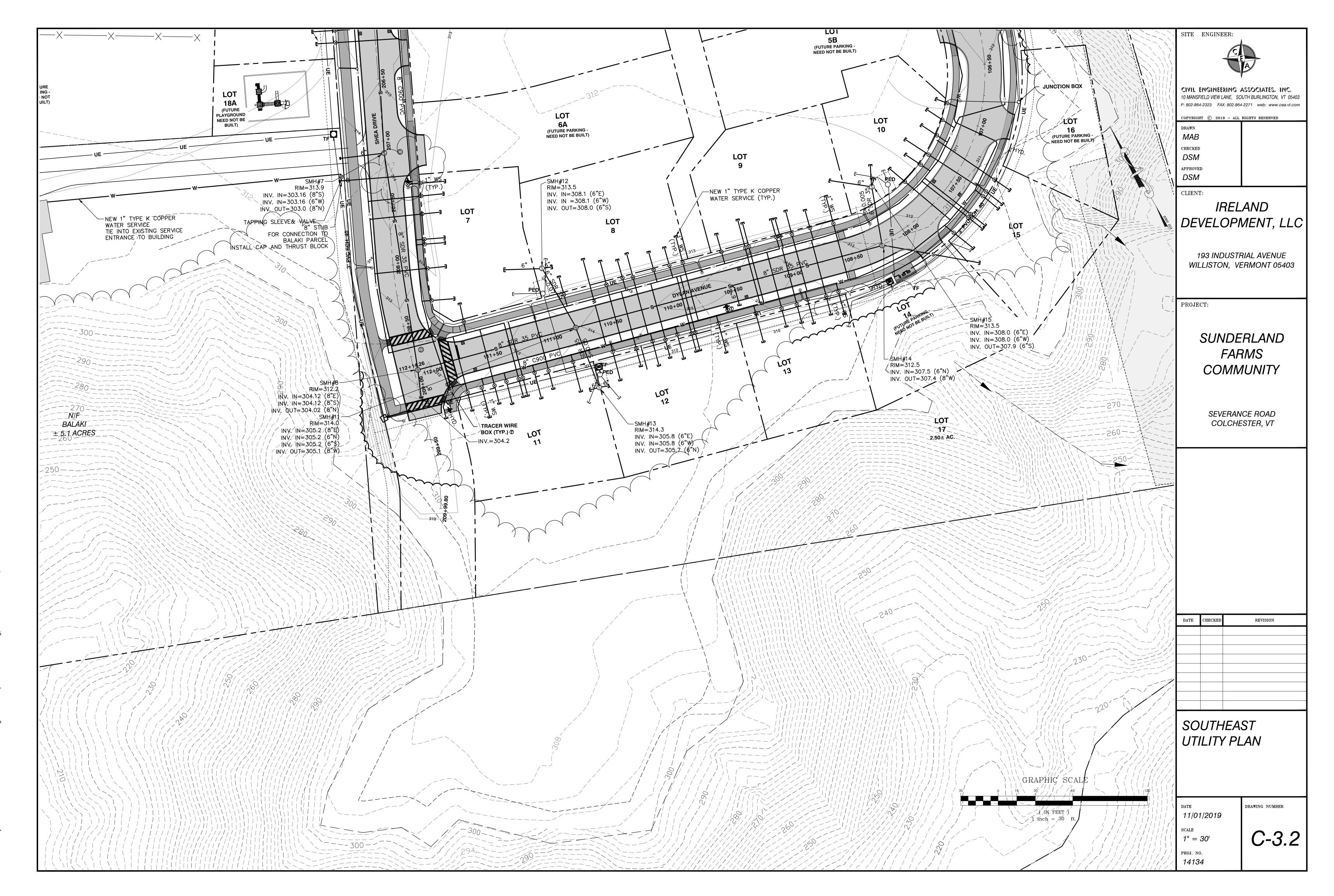
PLAN DATE/REV: 8/1/18

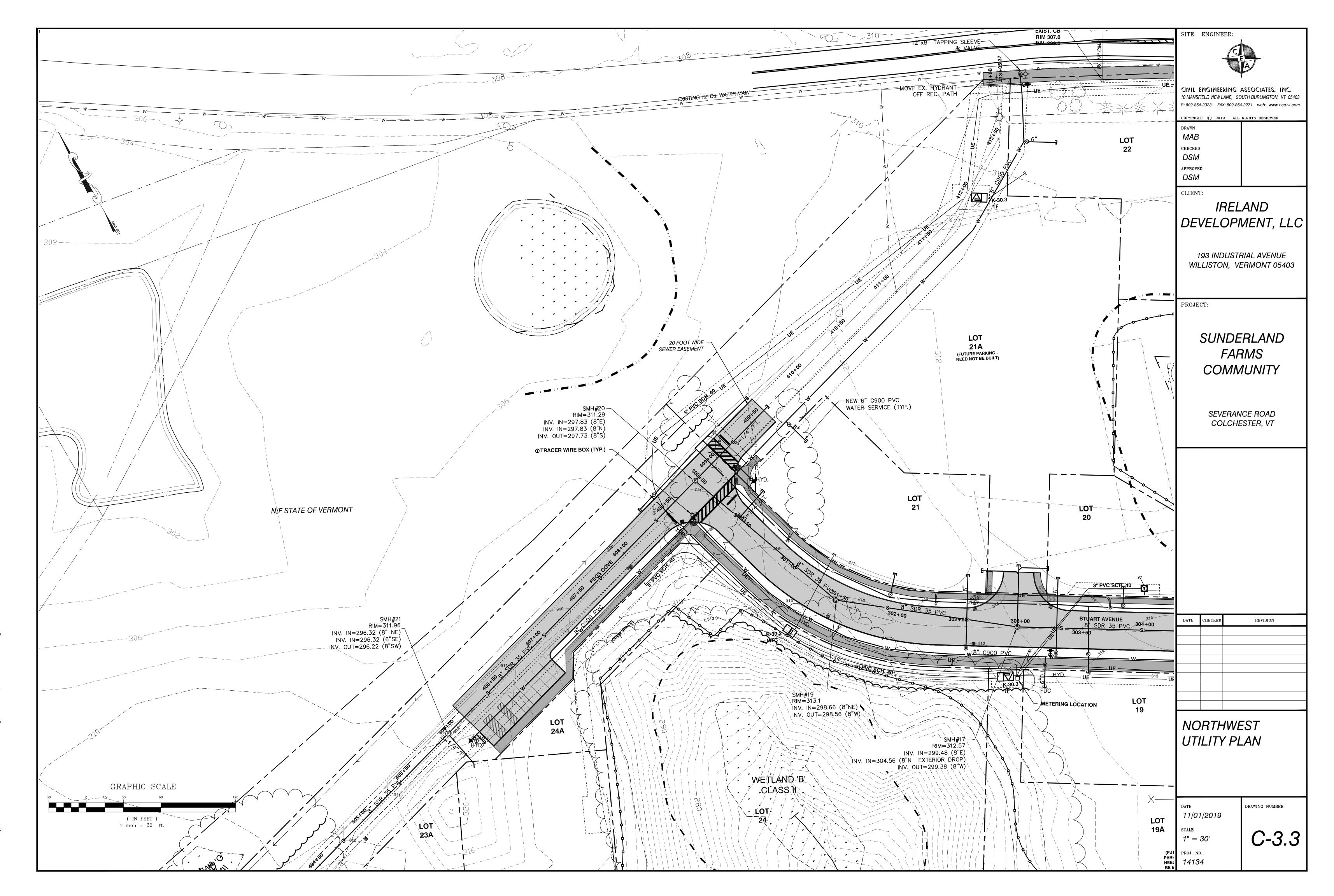
LOCATION: 242 Severance Road ENGINEER: Civil Engineering Associates DATE REV'D: 11/1/19 REV'D BY: S. Roy & Lance Llewellyn

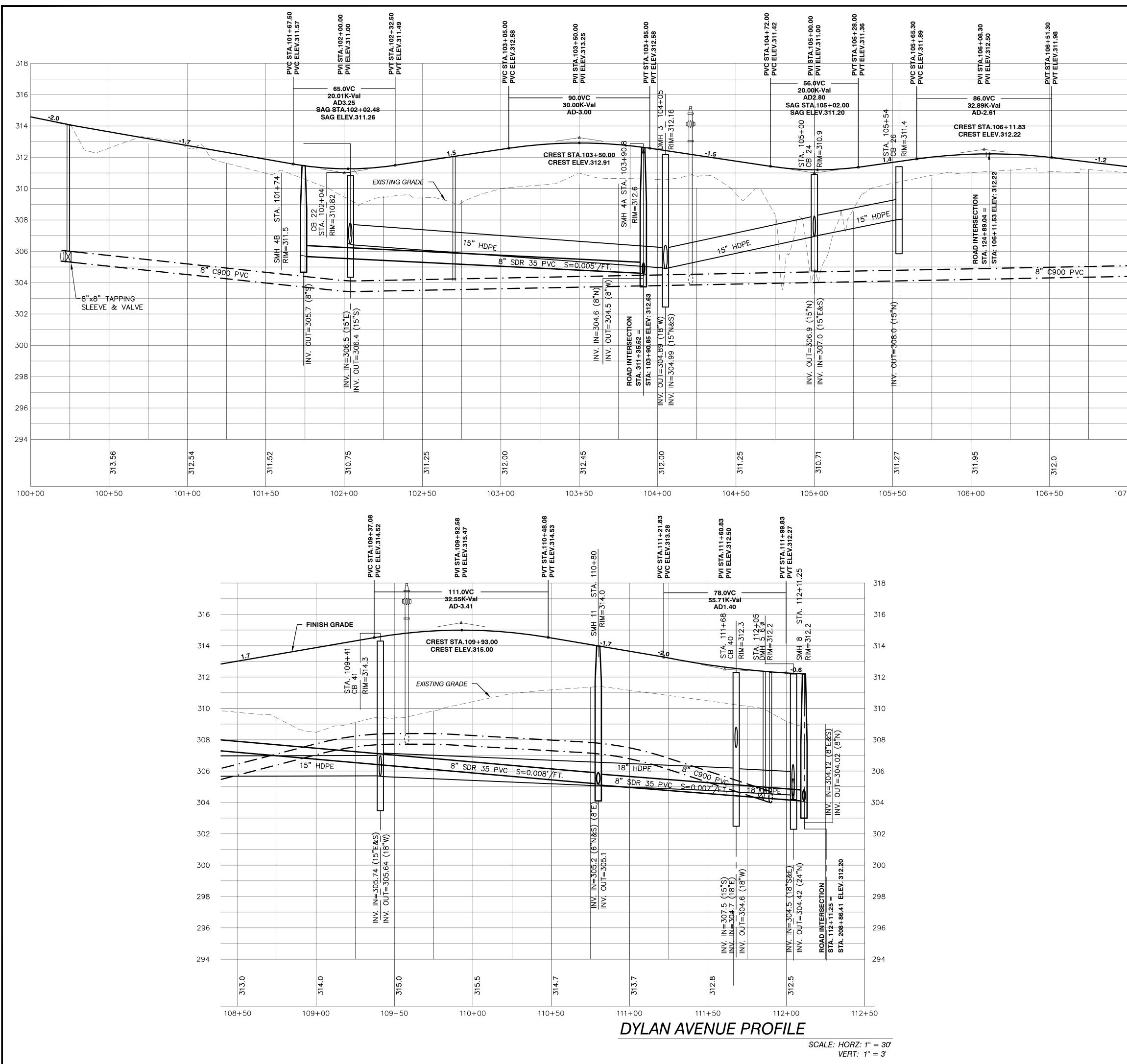

Insuff. N/A Info Yes No \times 1. Are the water mains located under/adjacent to the proposed street(s)? 2. Are the public water mains 8" minimum Class 51/52 DI pipe or C900 DR14 (305 psi) pipe with tracer wire and metallic warning tape? Х 3.Is the depth of all water mains between 6' and 9' below grade? 4. Does the proposed design avoid 90 degree bends? 5. Does the proposed design prevent dead ends? 6.Do new tee connections include valves on all three legs? 7.Do all mains meet horizontal and vertical separation from sewers? Х 8. Are fire hydrants located every 500' residential and 300' commercial? 9. Are there fire hydrants located within 100' of a sprinklered building? 10. Are fire hydrants set back at least 3' from paved areas? 11. Do fire hydrants meet Town specifications? 12. Are the fire hydrants connected to main with 6" pipe and valve? 13. Are there hydrants at high point(s) to aid in air removal? 14. Are there mechanical thrust restraint and thrust blocks at all fittings? 15. Do all valves meet Town specifications? 16. Are all valves and curbstops located within town right-of-way? 17. Are there any special easement requirements on this project? 18. Do all valves include a valve box at grade w/covers marked "water"? 19. Do all services leave water mains and enter buildings at right angles? 20. Are all services up to 2" using type K copper or CTS pipe? 21. Are there separate fire and domestic connections? 22. If plastic pipe is used for services, do they include a tracer wire and metallic warning marked "Caution Water Line Below" 2' below grade? imes23. Do the plans include a water system specifications drawing, including pressure testing and disinfection requirements? 24. Do the plans include water use estimates using the applicable table \times from the latest Vermont Environmental Standards? 25. Is the project large enough to require Needed Fire Flow (NFF) and/or hydraulic analysis for domestic and fire flow demands, or to prove whether or not the project may have an adverse impact to existing customers? 26. Does or should (circle one) the design include a looped water system? \square 27. Do multifamily dwellings have means for separate metering? 28. Do the plans include backflow preventers as required by CWD/CFD?

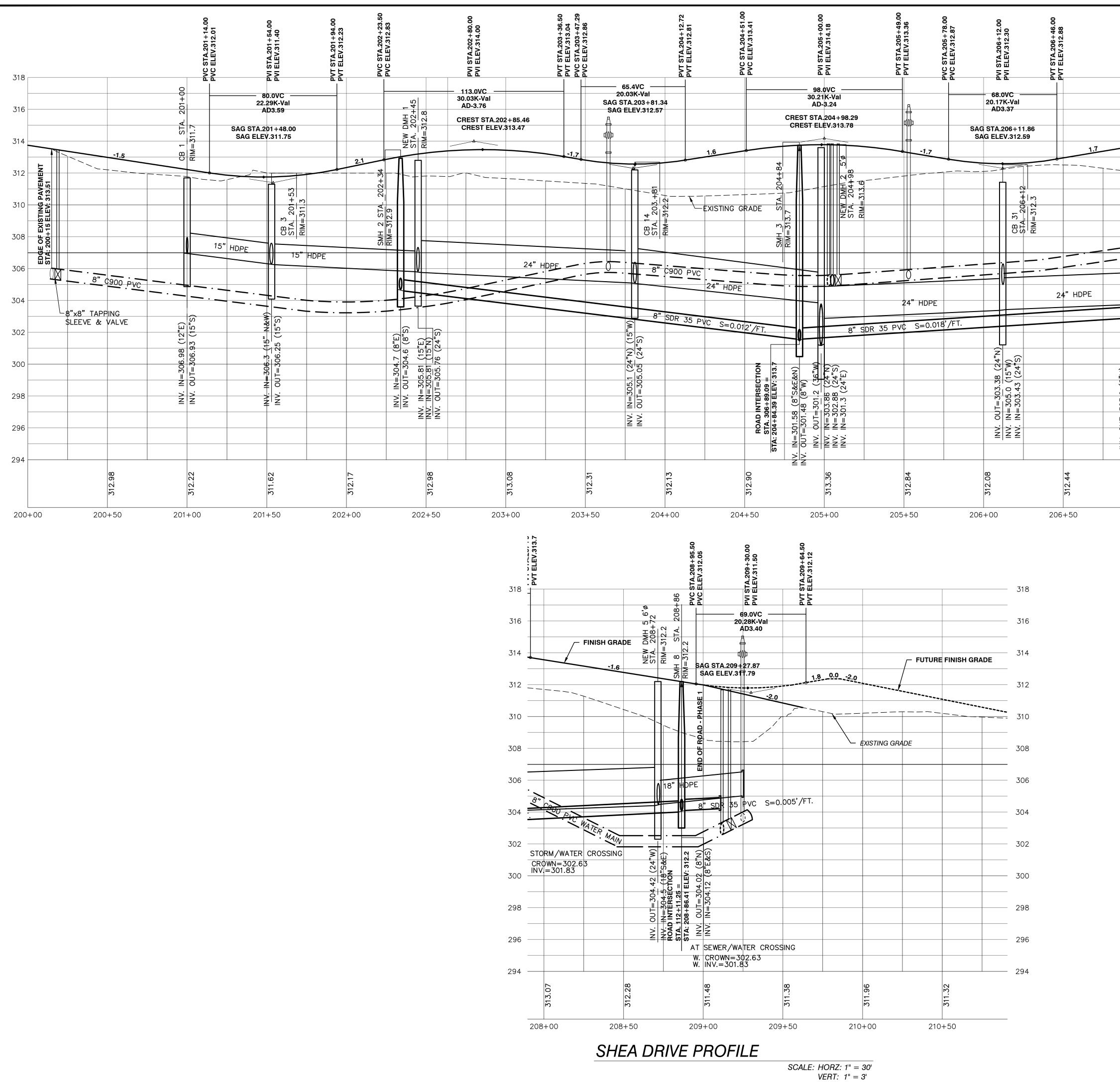

ADDITIONAL REVIEW COMMENTS

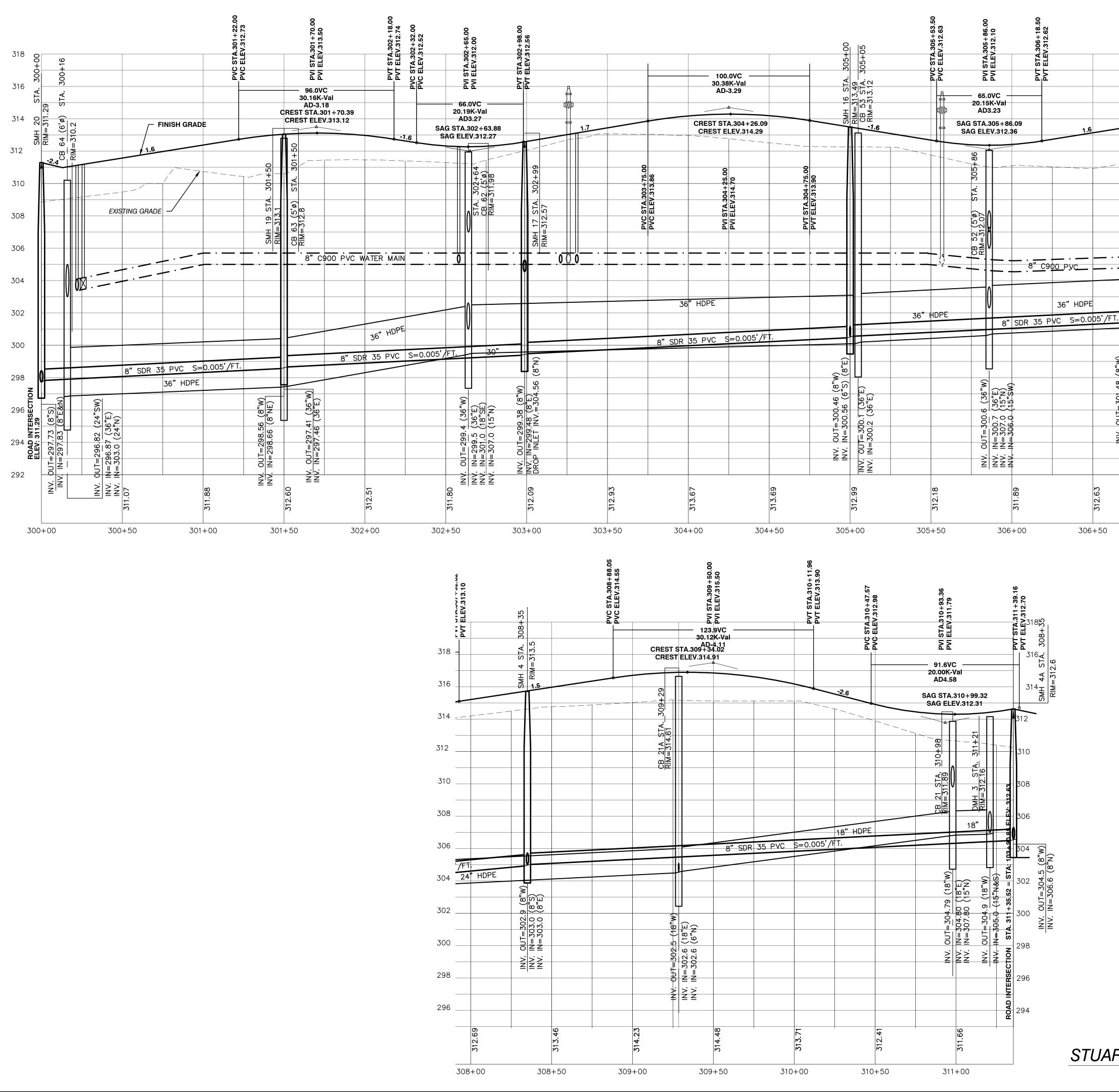

1. Water main material has been changed from DI to C900 pipe. Sheet C7.3 (Site Specifications) Section 2.02, incorrectly lists DR-14 as 200psi. The correct pressure rating should be 305psi.


Per item #2 of this review checklist, CFD#3 allows DR-14 pipe provided it gets installed with approved tracer wire and metallic warning tape.

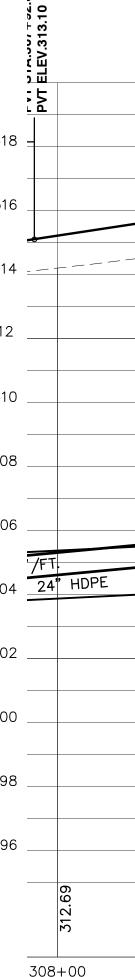

- 2. Tracer wire is called out on Sheet C5.1 (Water Details) with no specifications. We request the use of copper-clad steel wire and locking connectors from Copperhead Industries.
- 3. Per item #3 of this checklist, water main depths exceed 9 feet on Shea Drive (Sheet C4.1) in at least two locations (Sta 202+45 and Sta 208+72). This should be avoided.
- 4. Per item #4, two (2) 90 degree bends are represented on Dylan Avenue (Sheet C3.2) near Sta 107+00. Replace each bend with 45 degree elbows.
- 5. Sheet C7.4 Section 2.14. Please eliminate Waterous Pacer fire hydrants. CFD#3 recommends the Kennedy K81 over the Mueller hydrant.
- 6. Tracer wire can either be terminated in the hydrant valve box or in an adjacent curb box as shown in the Tapping Sleeve & valve Detail on Sheet C5.1.
- 7. Per item #17, are there easement requirements to allow CFD#3, or its designee, to enter this project to inspect and/or maintain the distribution system following construction?
- 8. Checklist item #19, above, requires services to leave mains and enter buildings at right angles. This set of plans doesn't show buildings and therefore this condition is not answered.
- 9. Response needed for item 21, above.
- 10. Add pressure testing and disinfection requirements to Site Specification sheet(s).
- 11. Per item #24, above, water use estimates are provided separate from these plans.
- 12. Per item #25, above, while Needed Fire Flow (NFF) numbers have not been provided, a simple hydraulic analysis by Krebs & Lansing with the new 12" water main through Sunny Hollow should meet the project's domestic and fire needs.
- 13. Backflow preventers are <u>required</u> on services that provide both domestic and sprinkler water.
- 14. Typical Water Trench Detail vague use of insulation when depth of cover is less then 6' specify depth and required insulation
- 15. Water/Sewer Crossing Detail specifies 18" minimum separation. On new construction 18" should be obtainable. Clarify.
- 16. Water/Storm Crossing Detail (for new construction) would dictate all water/storm crossings main are greater than 18" separation. Clarify.
- 17. Hydrant Assembly Detail Location in relation to curb or sidewalk See CFD#2 Standards page 16. Should the 6" water main be specified as lined DI?
- 18. Tapping Sleeve and Valve Detail We don't want concrete encased fittings
- 19. Replacement of existing pavement NA to our review
- 20. 2.03 F - All fittings shall be mechanically restrained (i.e. Megalug or equal) and thrust blocked.
- 21. 2.05 A -Sleeves shall be stainless steel?
- 22. 2.07 Gate valves are not required every 500'?
- 23. 2.16 C Doesn't mention C900 water main.
- 24. 3.03 A & B Specified 18" separation. Should be possible on new construction. As storm sewers aren't shown cannot determine horizontal and vertical separation with water mains.



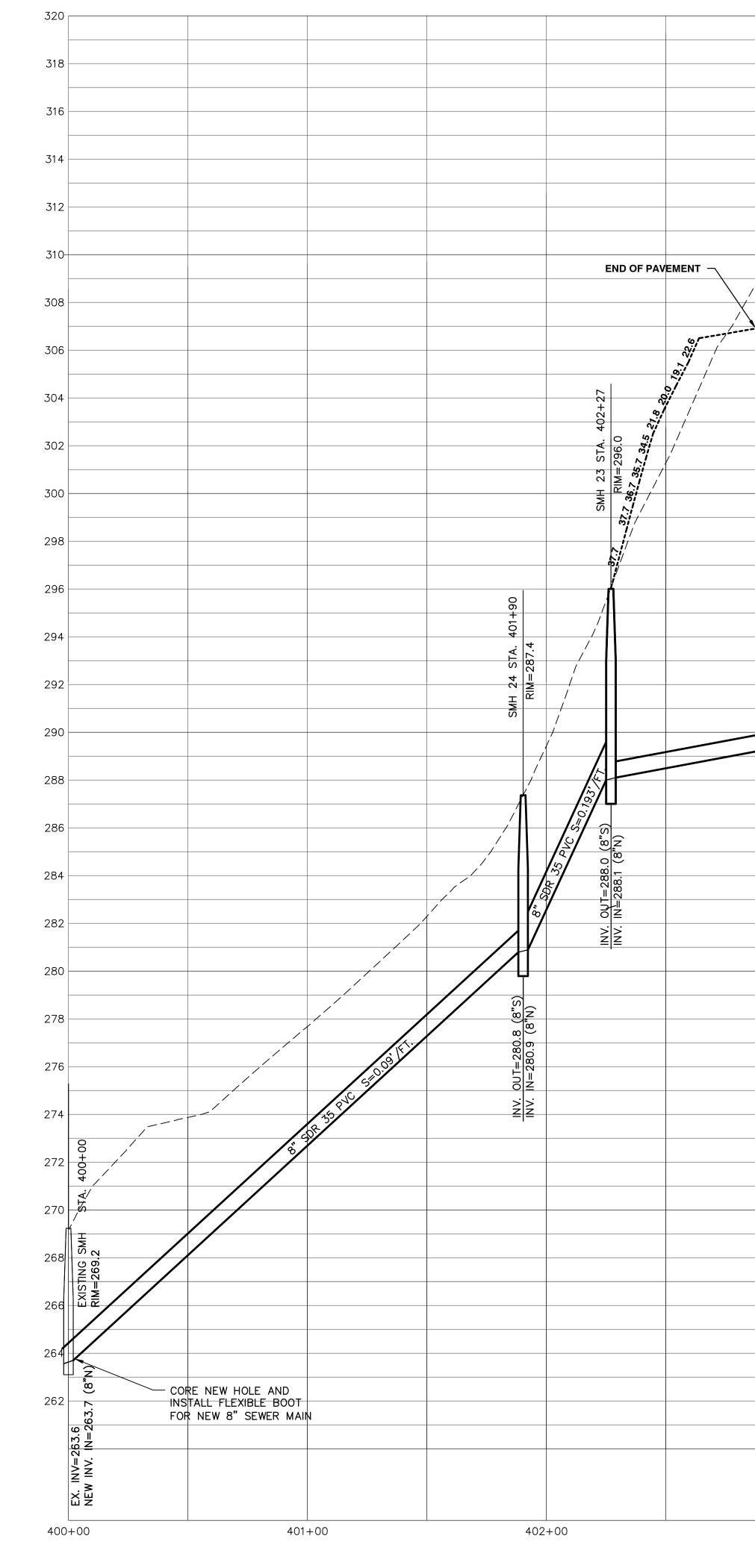




PVC STA.107+13.75	P STA. 107+54 743.74 CB 44 74.311.11 RIM=311.1 PVI ELEV.311.11	PVT STA.107+73.74 PVT ELEV.311.71	SMH 14 STA. 108+25 RIM=312.5	1.7	316 314 312	10 MANSF	FIELD VIEW L 4-2323 FAX IT © 2019	RING A ANE, SO X: 802-864	ASSOCIATES. INC. UTH BURLINGTON, VT 05403 -2271 web: www.cea-vt.com RIGHTS RESERVED
SAG STA.107 SAG ELEV.3 			INV. IN=307.5 (6"N)	001=307.4	310 308 308 306 304 302 300	1	r: /ELC 93 INC LISTO	OPN DUSTF	AND MENT, LLC RIAL AVENUE ERMONT 05403
00+00	311.2 INV. IN=306.65 (15"NW) INV. OUT=306.5 (15W)	108-	312.0	0.55 108+50	298		SUN CO	FAF MM	RLAND RMS IUNITY CE ROAD STER, VT
						DATE	CHECKED		REVISION
						RO ST/	AD	PR()0+	ENUE OFILE ·00 -
						scale HOR		30' 3'	drawing number

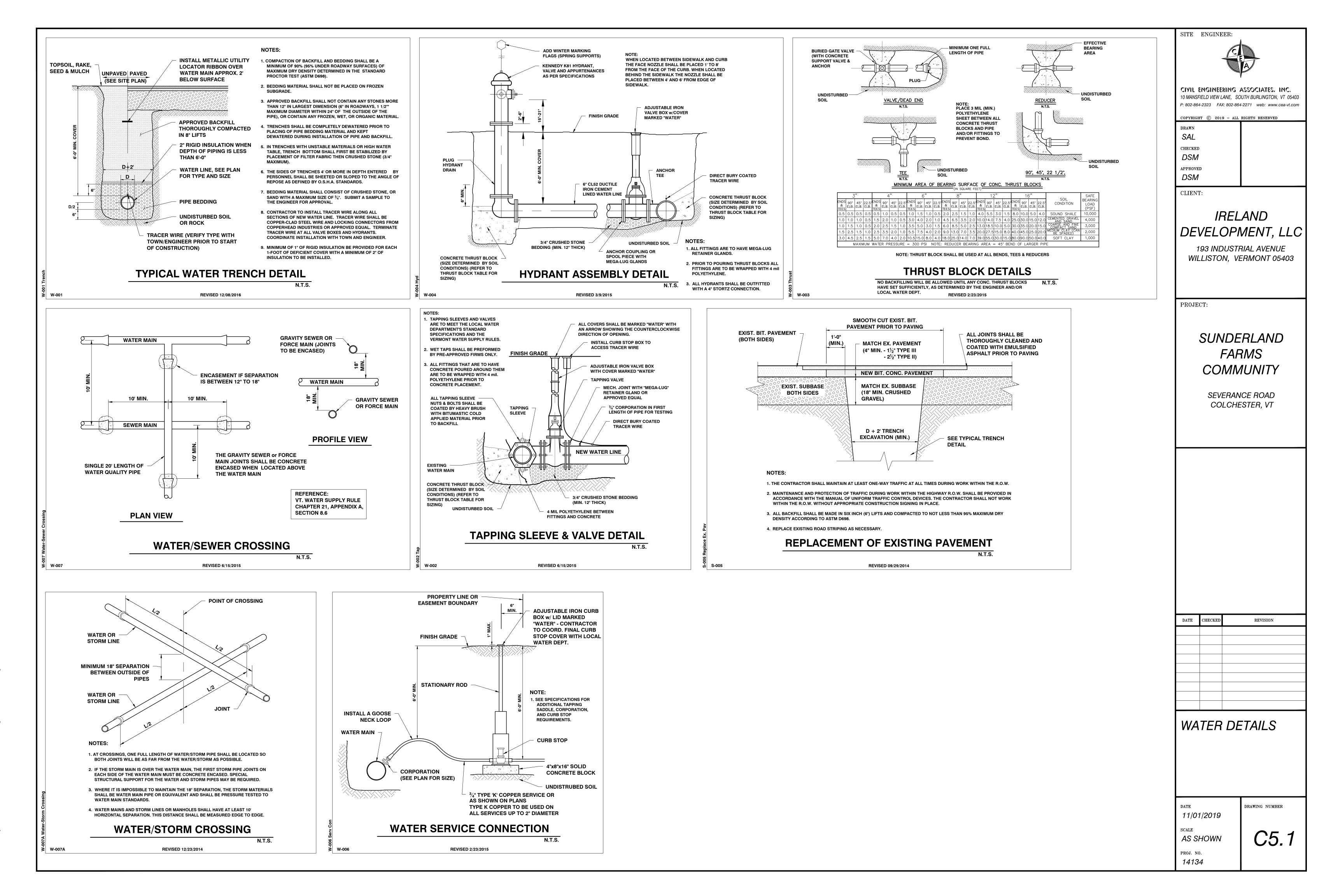


PVC STA.206+92.50				6 PVI STA.207+42.00 6 PVI ELEV.314.50	/C -			PVT STA.207+91.50			31
			<u>ے</u>	99.0\ 30.11K AD-3.	-Val 29						
											31
			-							FINISH	
	- Fi					207+43.					31
						V.314.0					
<u></u> 60		60					Ţ	·			31
SMH 7 STA. 207+09	13.9	DMH 4 207+09	3.6							<u> </u>	
TAH TAH	Ω ■ ₩	NEW DN STA. 20	1=31								31
אׂמ		Z N Z									
	┥╺╂┥	•		• • •							30
—	-+	• — AT S T		/WATE		ROSS	G				70
		15" S W. IN	ST. C V.=3	ROWN 07.3	=30	5.2 🔨					30
	Ű					" HDP		· 8			70
	╞═╂Ĭ	8"	SDR	35 F	VC	S=0.0	05 '/ F	T.	PIC	VATER .	30
										ATER 1	30
]	1						RM/WATER		
(8"S)		(24"N)	s.				N N	/. CR(/. INV	WN=302.6 =301.83	3	70
(N) (M)		Ŭ	പ്രി								30
0 (8 (6)		=81	600								29
.303. 03.16		JT=3	= 303. = 303.								29
0UT= N=3(ע י									20
INV. OUT=303.0 (8"N) INV. IN=303.16 (6"W)		Ž									29
$\leq \leq$											29
ő					36				22		23
313.29					313.66				313.07		
ر <i>د</i> ر					. ,						
207	+00			207	+50			208	+00		


SITE ENGINEER:							
CIVIL ENGINEERING 10 MANSFIELD VIEW LANE, SC P: 802-864-2323 FAX: 802-864	OUTH BURLINGTON, VT 05403 4-2271 web: www.cea-vt.com						
COPYRIGHT © 2019 - ALL DRAWN MAB CHECKED DSM APPROVED	RIGHTS RESERVED						
DSM CLIENT:							
	AND MENT, LLC						
	RIAL AVENUE ERMONT 05403						
PROJECT:							
FAF	RLAND RMS IUNITY						
SEVERANCE ROAD COLCHESTER, VT							
DATE CHECKED	REVISION						
SHEA DRIVE ROAD PROFILE STA. 200+00 - 209+73							
^{date} 11/01/2019	DRAWING NUMBER						
SCALE HORZ: 1" = 30' VERT: 1" = 3' PROJ. NO. 14134	C4.1						

69:13.7 69:13.7 69:13.7 12 12 12 12 13 13 13 13 13 13 13 13 13 13	65.6VC 20.00K-Val AD3.28 SAG STA.307+62.29 SAG STA.307+62.29 SAG ELEV.312.87 SAG STA.307+62.29 SAG ELEV.312.87	PVT STA.307+92.82 PVT STA.307+92.82 PVT ELEV.313.10 PVT STA.307+92.82 PVT STA.307+92.82 PVT STA.307+92.82 PVT STA.307+92.82 PVT STA.307+92.82 PVT STA.307+92.82 PVT STA.307 PVT STA.307 PVT STA.307 PVT STA.307 PVT STA.307 PVT STA.307 PVT STA.307 PVT STA.307 PVT STA.313.10 SMH 4 STA.308 PVT STA.313.10 SMH 4 STA.308 PVT STA.313.10 SMH 4 STA.313.10 STA.31	312 310 308	SITE ENGINEER:
313.09 INV. OUT=301.48 (8"W) NV. IN=301.58 (8"S&E&N) NV. IN=301.58 (8"S&E&N) STA. 204+84.39 STA. 204+84.39 STA. 204+84.39 INV. IN=303.86 (24"N) INV. IN=302.88 (24"N) INV. IN=302.88 (24"N)	IN=501.5 (24 INV. 0UT=301.7 INV. IN=301.7 INV. IN=304.9 INV. IN=306.5	308+00	(1) ∞ 0 0 0 0 0 0 0 0 0 0 0 0 0	<section-header><section-header><section-header><text></text></section-header></section-header></section-header>
				DATECHECKEDREVISIONIII
RT AVE PRO	SCALE: HOR	$\overline{\partial Z: 1^{"} = 30^{"}}$ T: 1" = 3"		STUART AVENUE ROAD PROFILE STA. 300+00- 311+35.5 DATE 11/01/2019 SCALE HORZ: 1" = 30' VERT: 1" = 3' PROJ. NO. 14134

FUTURE FINISH GRADE 000000000000000000000000000000000000			8 SDR 35 PVC S=0.005'/FT.	09.52 + 3 0 6 + 40 0 +	10 MANSFIELD VIEW LANE, SOUTH BURLINGTON, VT 05403 P: 802-864-2323 FAX: 802-864-2271 web: www.cea-vt.com COPYRIGHT © 2019 - ALL RIGHTS RESERVED DRAWN MAB CHECKED DSM APPROVED DSM CLIENT: IRELAND DEVELOPMENT, LLCC 193 INDUSTRIAL AVENUE WILLISTON, VERMONT 05403 PROJECT: SUNDERLAND FARMS COMMUNITY
		Image: second		27 4 27 2 27 2 27 C 27 C 26 8	DATE CHECKED REVISION Image: Imag
Image: second					PEGS COVE ROAD PROFILE STA. 400+00 - 408+00
403+00 404+00 PEGS COVE PRO	405+00 OFILE SCALE: HORZ: 1" = 3 VERT: 1" = 3		407+00 22.60 20 20 20 20 20 20 20 20 20 20 20 20 20	88.80 80 408+00	DATE $11/01/2019$ DRAWING NUMBER SCALE $HORZ: 1" = 30' VERT: 1" = 3' PROJ. NO. 14134$ DRAWING NUMBER


320 ——					œ		STA.408+83.25 ELEV.311.36	STA.409+24.75 ELEV.312.50	19+66.25	09+80.35 312.50 9+92.85
318 ——		: STA.407+53.71 : ELEV.309.83	PVI STA.407+98.94	-EV.309.03	STA.408+44.18 ELEV.310.28	+81	PVC STA.4		PVT STA.409+66.25	PVC STA.409+80.35 PVC ELEV.312.50 PVI STA.409+92.85
316						STA. 408+81		83.0VC	60 OAD	- 25.0 35.79 AD0
314			90.5 20.00 AD4	K-Val .52		SMH 20 RIM=311.25			STA: 409+60 END OF PHASE I ROAD	0
312 —	-1.8					2.8		2 7		
310								CB 65 CB 65 STA 409+12 RIM=311.75		
508 ——		SAG STA.407+ SAG ELEV.30		STA. 407+96 CB 76 (6'ø) RIM=309.27 STA. 408+51 CB 64 (6'ø)	10.2	·)PF	
506				STA. 4 CB 76 CB 76 RIM=3 STA. 4 CB 64	RIM=3		24" HC	PE 24 TIL		
504 ——					-		· ·		<u> </u>	
502 <u> </u>		8" C900 PVC WA	TER MA	N				3 (24"SW) (24"NE)		
300 <u> </u>	42" HDPE			42 HDPE		1		NV. OUT=305.3 INV. IN=305.4 (
	SDR 35 PVC S=0.0	005'/FT.				V	╶╢╝┈╝			
296							3 (8"S) (8"E&N)			
294			42"SW)		2 (42"SW)					
292 —— 			0UT=296.55 (42"SW)	2.8 (15"	OUT=296.82	.0.87 1.0.87	INV. OUT=297.7 INV. IN=297.83			
290 —— 288 ——				 N N N N 	NV.		ZZ			
286			Z 2	≥ Z Z			311.29			
284							ECTION 35 ELEV: 3 311.2			
282							ROAD INTERSECTION STA: 408+81.35 ELEV: 3 STA: 300+00 ELEV: 311			
280							STA STA			
	.01	.72		308.88		309.42	310.85		312.28	
	310.01	309.72		308		309	310		312	

- FUTURE FINISH GRA							
	Γ						
		- FUTURE FINISH GRADE					
0.7 0.1	16			PROPOSED REC. PATH			
			RELOCATED HYDARNT		EXISTING PAVEMENT SEVERANCE ROAD		
			`				
			EXISTING GRADE —				
-·							
PVC WATER MAIN				<u>+ · − − · </u> +			
					EX. 12" WATER MAIN		
					-8"x12" TAPPING		
					8"x12" TAPPING SLEEVE & VALVE		
312.37	312.51	313.08	312.91	309.52	308.62		
			412+00	413-		414+00	415+00

PEGS COVE PROFILE

SCALE: HORZ: 1" = 30' VERT: 1" = 3'

SITE ENGINEER:									
C	CE								
CIVIL ENGINEERING A 10 MANSFIELD VIEW LANE, SOU P: 802-864-2323 FAX: 802-864-	JTH BURLINGTON, VT 05403								
	COPYRIGHT © 2019 – ALL RIGHTS RESERVED DRAWN								
MAB CHECKED									
DSM									
APPROVED DSM									
CLIENT:									
	IRELAND DEVELOPMENT, LLC								
193 INDUSTR WILLISTON, VE									
PROJECT:									
SUNDE									
SUNDE FAR									
COMM									
SEVERAN									
COLCHE									
DATE CHECKED	REVISION								
PEGS COV									
ROAD PRO									
415+37									
date 11/01/2019	DRAWING NUMBER								
SCALE									
HORZ: $1'' = 30'$ VERT: $1'' = 3'$ PROJ. NO.	C4.4								
14134									

- 2. This amount shall be converted to a 24-hour rate and the leakage determined on the basis of depth and size of structure. The leakage for each structure shall not exceed one aallon per vertical foot per 15 linear feet of wall (as measured in plan view) for a 24 hour period for exfiltration and there shall be no visible infiltration.
- C. Air Test: Alternatively, the manhole may be tested for leakage using the following procedure:
- 1. All lifting hole and exterior joints shall be filled and pointed with an approved non-shrinking mortar. The completed manhole shall not be backfilled prior to testing. Structures that have been backfilled shall be excavated to expose the entire exterior prior to vacuum testing or the manhole shall be tested for leakage by means of a hydrostatic test.
- 2. All pipes and other openings in the manhole shall be suitably plugged in a manner to prevent displacement.
- 3. A plate with an inflatable rubber ring the size of the top of the manhole shall be installed by inflating the ring with air to a pressure adequate to prevent leakage of air between the rubber ring and the manhole wall.
- 4. Air shall then be pumped out of the manhole through an opening in the plate until a vacuum is created inside of the manhole equal to 10 inches of mercury on an approved vacuum gauge. The removal of the air shall then be stopped and the test time begun.
- 5. The vacuum must not drop below 9 inches of mercury within a 2 minute test period. If more than 1 inch of drop in vacuum occurs within the 2 minute test period the manhole has failed the test and shall be repaired or reconstructed and retested.
- D. Following satisfactory test results, the manhole may be backfilled.

3.09 SERVICE CONNECTION

No sanitary sewer shall be placed in service until such time as the Town has given final approval to the sewer installation, including satisfactory completion of all required tests. Service connections shall not be made until all receiving sewer mains have been completed and approved and as-builts received along with GPS coordinates and approved by the Town Wastewater Department.

A. Laterals

Where required on the plans, sewer service connections for one house shall be constructed of four inch (4") pipe, unless otherwise noted on the plans, of the type material specified under this section. The pipe shall be laid and its joints made as required for sewer construction in this specification. Open ends of pipes shall be properly sealed to prevent damage and intrusion of foreign matter where hookup to the building sewer is not coincident with sewer main construction. Additionally, the Contractor will provide a stable, temporary marker approved by the Town Wastewater Department from the sewer service invert up to six inches (6") above the finish grade and seated securely into the ground for ease in relocating the end of sewer service connection for hooking up the building sewer. Two (2) tie points to permanent objects shall be documented. The tie points shall be submitted to the homeowner and to the Wastewater Department.

In the case of reconnection of existing services, such reconnection will be made only after the new sewer main has been completed, tested, and accepted. The excavation, bedding material, installation, and backfill for service connections shall be the same as for sewer mains.

B. Cleanouts for Sewers

Cleanouts for gravity sewers and force mains shall be provided at locations indicated on the plans or as directed by the Town Wastewater Department. Cleanout frames and covers against each other shall be machined to give continuous contact throughout their circumference. All iron castings shall be thoroughly cleaned and then coated with hot coal tar before being delivered. Individual laterals shall have cleanouts every one hundred feet (100'). Cleanouts shall also be installed in laterals with changes of alignment of 45 degrees or greater.

C. Chimneys

Chimneys shall be built of four inch (4") pipe and/or as indicated on the contract drawings. Each chimney shall be plugged or capped at end until ready to connect to existing services. Chimneys are required where the vertical drop between the finished grade surface and the main sewer line exceeds fifteen feet (15') at the wye from a service connection.

3.10 Force Main

After force mains have been laid and the trench backfilled, the pipe shall be subjected to a hydrostatic pressure test in accordance with AWWA Standard for Installation of Cast Iron Water Main, AWWA C600 (latest issue), Section 13. The hydrostatic pressure shall be 150 percent (150%) of normal operational pressure. After the pressure test has been satisfactorily completed, a leakage test shall be conducted in accordance with AWWA C600 (latest issue), Section 13. The minimum test pressure shall be 75 pounds per square inch at the high point in the system.

3.11 Wet well

The pre-cast concrete wet well shall be externally coated with an asphaltic sealant and tested for water tightness using an approved vacuum or water testing procedure.

PART 4 - PUMP STATION

4.00 SPARE PARTS

- A. A complete replacement pump shaft seal assembly shall be furnished with each lift station. The spare seal shall be securely fastened to the control panel and shall include complete installation instructions.
- B. Two (2) spare volute gaskets shall be provided.
- C. A spare filter cone for the seal filter shall be provided in the same container as the pump shaft seal.
- D. Provide 100% spare lamps and fuses for control panel.

- E. Provide all lubricants required for initial operation.
- F. Provide one (1) spare input and output card, processor, and power supply for the Programmable logic controller (PLC) system.
- G. Provide one (1) spare level transducer.

4.01 0 & M MANUALS

- A. Installation of all mechanical equipment shall be done in accordance with written instructions provided by the manufacturer. Installation instructions shall be delivered with the station.
- B. The manufacturer shall provide 5 copies of a complete and detailed operating and maintenance manual. This manual shall provide all design criteria, general operating procedures, maintenance and servicing procedures for all major components, and as-built drawings of the contributory gravity sewer system, the pumping station and force main. All instructions and parts lists shall be prepared for the specific equipment furnished and shall not refer to similar equipment. Operating manuals must be submitted to the Town prior to final acceptance of the station.
- 4.02 POLYETHYLENE (PE3408) SANITARY SEWER FORCE MAINS
- A. This specification covers requirements for PE3408 high density polyethylene sanitary sewer force mains. All work shall be performed in accordance with these specifications and manufacturer requirements.
- B. <u>Referenced Standards</u>. All standard specifications, i.e., Federal, ANSI, ASTM, etc., made a portion of these Specifications by reference, shall be the latest edition and revision thereof.
- C. Warranty and Acceptance. The Contractor shall warrant all work to be free from defects in workmanship and materials for a period of one year from the date of completion of all construction. If work meets these specifications, a letter of acceptance, subject to the one year warranty period, shall be given at the time of completion. A final acceptance letter shall be given upon final inspection at the end of the one year warranty period, provided the work still complies with these specifications. In the event deficiencies are discovered during the warranty period, they shall be corrected by the Contractor without additional charge to the owner before final acceptance. During the warranty period, the Project Engineer shall determine if warranty repairs or replacement work shall be performed by the Contractor. The decision of the Project Engineer shall be binding upon the Contractor.

D. <u>Polyethylene Pipe and Fittings</u>

- 1. <u>Qualification of Manufacturers</u>. The Manufacturer shall have manufacturing and quality control facilities capable of producing and assuring the guality of the pipe and fittings required by these Specifications. The manufacturer's production facilities shall be open for inspection by the Owner or his Authorized Representative. Qualified manufacturers shall be approved by the Project Engineer.
- 2. <u>Materials</u>. Materials used for the manufacture of polyethylene pipe and fittings shall be PE3408 high density polyethylene (SDR 11 or better) meeting cell classification 345444C or 345444E per ASTM D 3350; and shall be listed in the name of the pipe and fitting manufacturer in Plastics Pipe Institute's TR-4, Recommended Hydrostatic Strengths and Design Stresses for Thermoplastic Pipe and Fitting

Compounds, with a standard grade HDB rating of 1,600 psi at 73°F. The manufacturer shall certify that the materials used to manufacture pipe and fittings meets these requirements.

- 3. <u>Polyethylene Pipe</u>. Polyethylene pipe shall be manufactured in accordance with ASTM F 714. Polyethylene (PE) Plastic Pipe (SDR-11 rating or better) Based on Outside Diameter, and shall be so marked. Each production lot of pipe shall be tested for (from material or pipe) melt index, density, % carbon, (from pipe) dimensions and ring tensile strength.
- 4. Polyethylene Fittings & Custom Fabrications. Polyethylene ittings and custom fabrications shall be molded or fabricated by the pipe manufacturer. Butt fusion outlets shall be made to the same outside diameter, wall thickness, and tolerances as the mating pipe. All fittings and custom fabrications and connections shall be fully rated for the same internal pressure as the mating pipe. Pressure de-rated fabricated fittings are prohibited.
- 5. Molded Fittings. Molded fittings shall be manufactured in accordance with ASTM D 3261, Butt Heat Fusion Polyethylene (PE) Plastic Fittings for Polyethylene (IPE) Plastic Pipe and Tubing, and shall be so marked. Each production lot of molded fittings shall be subjected to the tests required under ASTM D 3261.
- 6. <u>Fabricated Fittings</u>. Fabricated fittings shall be made by heat fusion joining specially machined shapes cut from pipe, polyethylene sheet stock, or molded fittings. Fabricated fittings shall be rated for internal pressure service at least equal to the full service pressure rating of the mating pipe.
- 7. <u>Polyethylene Flange Adapters</u>. Flange adapters shall be made with sufficient through-bore length to be clamped in a butt fusion joining machine without the use of a stub-end holder.
- 8. <u>Back-up Rings & Flange Bolts</u>. Flange adapters shall be fitted with back-up rings pressure rated equal to or grater than the mating pipe. The back-up ring bore shall be chamfered or radiused to provide clearance to the flange adapter radius. Flange bolts and nuts shall be Grade 6 or higher (stainless steel).
- 9. Compliance Tests. Manufacturer's inspection and testing of the materials. In case of conflict with manufacturer's certifications, the Contractor, Project Engineer, or Owner may request retesting by the manufacturer or have retests performed by an outside testing service. All retesting shall be at the requestor's expense, and shall be performed in accordance with the Specifications.

1. Heat Fusion Joining. Joints between plain end pipes and fittings shall be made by butt fusion, electrofusion couplings and joints between the main and saddle branch fittings shall be made using saddle fusion procedures that are recommended by the pipe and fitting manufacturer. The Contractor shall ensure that persons making heat fusion joints have received training in the manufacturer's recommended procedure. The Contractor shall maintain records of trained personnel and shall certify that training was received not more than 12 months before commencing construction. External and internal beads shall not be removed.

- 2. <u>Butt Fusion of Unlike Wall Thicknesses</u>. Fusions of different wall thickness are acceptable, as long as the difference is limited to a one SDR difference, i.e. SDR 11 to SDR 9. Transitions between unlike wall thicknesses greater than one SDR shall be made with a transition nipple (a short length of the heavier wall pipe with one end machined to the lighter wall) or by mechanical means.
- 3. Joining by Other Means. Polyethylene pipe and fittings may be joined together or to other materials by means of (a) flanged connections (flange adapters and backup rings), (b) mechanical couplings designed for joining polyethylene pipe or for joining polyethylene pipe to another material, or (c) electrofusion. When joining by other means, the installation instructions of the joining device manufacturer shall be followed. All connections shall maintain the total pressure rating of the force main.
- 4. <u>Mechanical Joint Installation</u>. Mechanical joints shall be installed in accordance with the manufacturer's recommended procedure. When an OD compression mechanical coupling is used, a stiffener shall be installed in the bore of the polyethylene pipe.
- 5. <u>Branch Connections</u>. Branch connections to the main shall be made with saddle fittings or tees. Polyethylene saddle fittings shall be saddle fused to the main pipe.
- 4.03 HORIZONTAL DIRECTIONAL DRILLING W/ POLYETHYLENE PIPE
- A. Directional boring with PE3408 pipe shall be completed in accordance with the manufacturer's requirements and shall not in any way affect the joint connections or the overall strength characteristics of the pipe.

B. References:

"Mini-Horizontal Directional Drilling Manual" published by North American Society for Trenchless Technology (NASTT).

"Guidelines for a Successful Directional Crossing Bid Package" published by Directional Crossing Contractors Association (DCCA).

"Polyethylene Pipe for Horizontal Directional Drilling" of the Plastic Pipe Institute's Handbook of Polyethylene Piping.

C. <u>Quality Control</u>. All directional boring shall be completed in such a way as not to jeopardize the existing infrastructure/facilities, such as the roadway, utility poles, subsurface utilities, structures/foundations, or significant landscaping. Prior to directional drilling, all potential conflicts shall be field verified.

D. General

- 1. Directional drilling shall be performed in a manner required to install HDPE utility line as indicated on the drawings. Furnish all manpower and equipment required to perform the pipeline installation. The operation shall include all excavation and dewatering, drilling calculations, pilot hole, and pullback operations. Contractor shall be responsible for type of reamer, diameter, and other pertinent operations required for a complete installation. Contractor shall be responsible for mobilizing on-site with a full range of drill stems and reaming heads to allow for various factors which may occur. Drill stems shall be of proper size and diameter to allow for full thrust and torque capabilities of the drilling machines.
- 2. Contractor shall perform utility survey to locate information concerning existing utility lines located in the areas of the directional drilling work.
- 3. Directional drilling shall be accomplished by drilling from one side of the crossing to the other using an approved method. One method shall be drilling a small diameter pilot hole along the proposed utility route. Steering shall be accomplished by using drilling mud which is pumped into the drill pipe to provide rotational energy in a drill bit at the end of the drill pipe. A jet bit shall force the mud through small orifices and jet away the earth and to allow the drilled path to curve in the proper direction as the drill pipe is thrust forward. An electronic survey instrument shall be placed inside the drill pipe head. The instrument shall signal a computer of the drilled paths magnetic azimuth, vertical inclination, and orientation of the bend. This data shall be used by the drilling contractor to calculate location of the drill bit and allow steering adjustments to be made.
- 4. After completing the pilot hole, larger diameter reaming heads shall be pulled back in order to enlarge the hole as required to allow for the pipe pullback. The Contractor shall be responsible for multiple reaming operations as required to complete the work. Pull back operations shall be carried out as soon as possible following the final preream. During this phase of the work, the Contractor shall continue his work operations without interruption regardless of the day of week or hour of the day. A pullback head shall be attached to the pipe to allow fastening to the swivel head reamer. The head shall be closed to prevent drilling mud from entering the main during the pullback operation.
- 5. Upon completion of the drilling operations, the equipment and materials used shall be removed from the site and the areas disturbed shall be restored to original conditions. The main shall be tested in accordance with Section 02730 of the Specifications. If the main fails the testing, it shall be removed and the work repeated at no additional cost to the Owner.

WATER SUPPLY SYSTEM

PART 1 – GENERAL

- 1.01 SUMMARY
- A. Section includes:
- 1. Pipe Materials
- 2. Hydrants
- 3. Valves
- 4. Fittings
- 5. All other appurtenances necessary to complete the water main system as shown on the Contract Plans.

1.02 SUBMITTALS

A. Product Data: Submit published data from manufacturers of products and accessories specified, indicating compliance with requirements to the Engineer and local municipality.

1.03 QUALITY ASSURANCE

A. All materials and the installation procedure shall be in accordance with the Department of Environmental Conservation, Water Supply Division and the applicable construction ordinances of the local municipality.

PART 2 - PRODUCTS

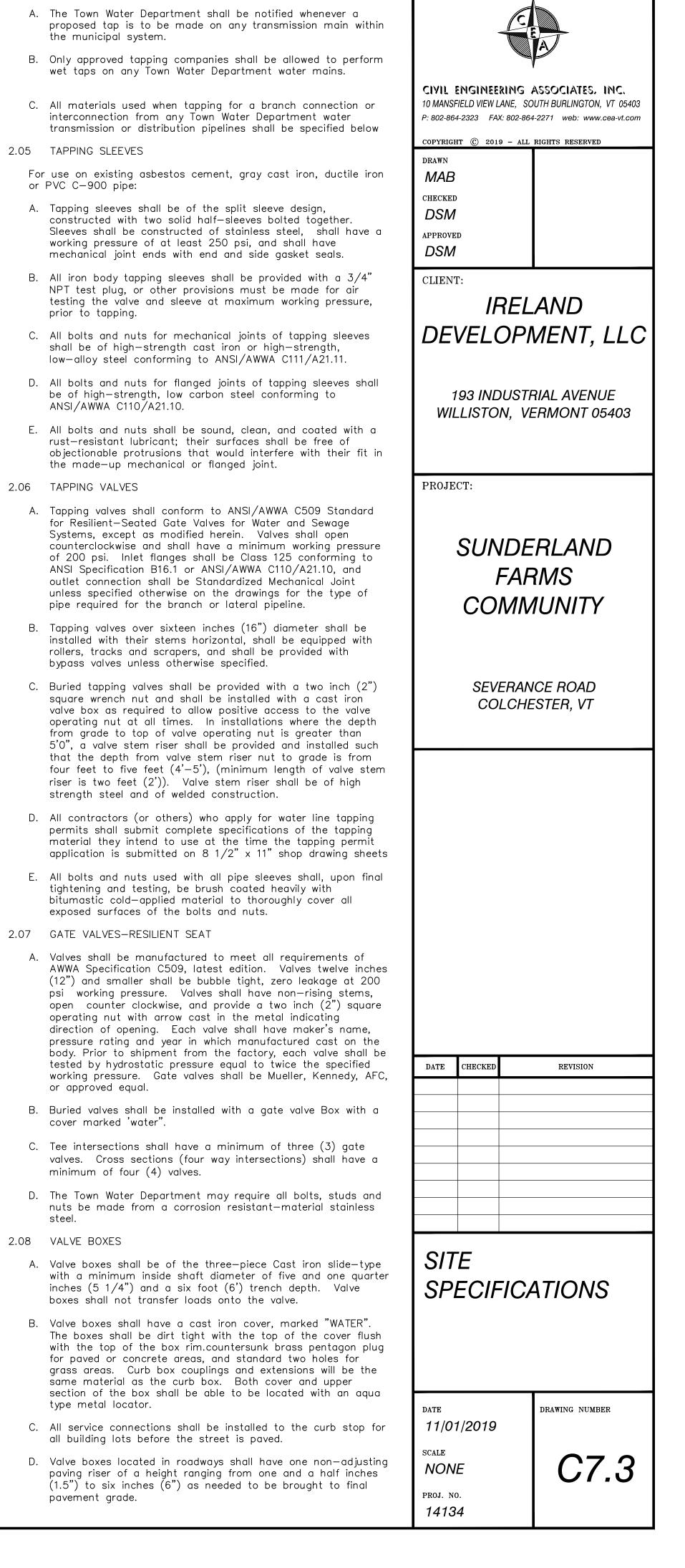
- 2.01 GENERAL
- A. Furnish ells, tees, reducing tees, wyes, couplings, increasers, crosses, transitions and end caps of the same type and class of material as the conduit, or of material having equal or superior physical and chemical properties as acceptable to the Engineer as necessary to complete the water system.

2.02 WATER MAIN MATERIAL

C-900 PVC WATER MAIN

A. Pipe shall be C-900 (DR-14 305 psi) PVC (sizes as shown on the plans) conforming to current AWWA C-900, latest revision and shall be UL and FM approved. Larger size mains will be required if necessary to allow withdrawal of the required fire flow while maintaining the minimum pressure specified in the VT Water Supply Rule, Chapter 21, 8.1.1. Any proposed departure from minimum requirements shall be justified by hydraulic analysis and future water use assessment, and will be considered only in special

circumstances (VT Water Supply Rule, Chapter 21 8.1.4). Push-on joint accessories shall conform to applicable requirements of ANSI/AWWA C111/A21.11.


B. When a pipe material is specifically noted on the contract drawings, the contractor/developer shall not have the option of utilizing any other pipe material. Galvanized pipe or fittings shall not be used in any water system owned or maintained by the Town. The Town Water Department requires the use of polyethylene pipe sleeve encasements and/or alternate pipe materials in known or suspected corrosive soil conditions.

DUCTILE IRON WATER PIPE

- A. Pipe shall be Tyton Ductile Iron Class 52 (sizes as shown on the plans) conforming to current ANSI/AWWA C151/A21.51 latest revision. Push-on joint pipe shall be minimum thickness Class 52. Push-on joint accessories shall conform to applicable requirements of ANSI/AWWA C111/A21.11.
- B. Pipe shall be cement mortar lined on the inside in accordance with ANSI Specification A21.4 except that the cement lining thickness shall not be less than 1/8 inch. A plus tolerance of 1/8 inch will be permitted.
- C. Pipe shall be given an exterior petroleum asphaltic coating in accordance with ANSI/AWWA Specification C151/ASNI A21.51.
- D. Pipe shall be poly wrapped with a minimum thickness of 4 mil poly in accordance with AWWA Specification C105 / ANSI A21.5, unless approved otherwise.

2.03 FITTINGS

- A. Ductile iron fittings shall conform to ANSI/AWWA C110/A21.10. 350 PSI working pressure. Ductile iron fittings larger than twelve inches (12") shall have a standard body length equal to Class 250 Cast Iron fittings. Cast Iron Class 250 fittings will be allowed in lieu of ductile iron fittings larger than twelve inches (12"). Ductile iron fittings shall be rated for 250 p.s.i. However, twelve inch (12") and smaller may be rated for 350 p.s.i. with the use of special gaskets. All ductile iron compact fittings shall conforming to AWWA/ANSI C153/A21,53 standards.
- B. Anchor tees shall be standard mechanical joint tees except that the branch is plain Class 250 cast iron or Class 350 ductile iron, cement lined, conforming to ANSI/AWWA C110/ A21.10, C111/A21,11, and C104/A21.4. Anchor tees shall be Clow F-1217, U.S. Pipe U5-92 or equal.
- C. Mechanical Joint restraints shall be incorporated into the design of the follower gland and shall include a restraining mechanism which, when actuated, imparts multiple wedging action against the pipe increasing its resistance as the pressure increases. Flexibility of the joint shall be maintained after burial. Glands shall be manufactured of ductile iron, and have a minimum working pressure of 350 psi. Twist off nuts (i.e. mega-lug) or equal shall be used to ensure proper actuating of the restraining devices. Contractors may also use approved grip ring (or equal) retainer glands.
- D. Bolts shall conform to ANSI Specification A21.10.
- E. Pipeline couplings shall conform to AWWA Standards C110 and ANSI A21.10. Mechanical joint connecting pieces of proper diameter shall be installed in accordance with the manufacturer recommendations and at locations directed by the plans or the Town Water Department.
- F. All fittings shall be mechanically restrained (i.e. Megalug or equal); double poly wrapped and have concrete thrust blocks poured in place as defined herein.
- 2.04 TAPPING SLEEVES AND VALVES

SITE ENGINEER:

Α.		tion shall be approved or maintained	
	protected as required by ordinances. The type of degree of hazard that e designed to protect pote	rtment unless the water supply is / State laws, regulations and protective device shall depend on the xists. In general, backflow devices able water supplies in accordance with for non-health hazard cross	
	connections and continu used, i.e. Watts Series (709 Double Check Valve installed on all sprinkler assembly showing backfl	ous pressure applications shall be 007 or approved equal. Watts Series Assembly or approved equal shall be systems. A shop drawing detail ow devices and meter placements Town Water Department.	
2.10	PIPE BEDDING		
Α.	established by the plans shall be excavated to the plan typicals. Pipeline tra- directly on the trench be by machinery, but shall such that the trench she the pipe throughout its material. Pipeline trench may be excavated to the No pipe shall be laid dir compact glacial till. Whe encountered and the Top- it cannot support the pip shall be excavated and approved material at the trenches shall be dry du	and maintained on lines and grades for the project. Pipeline trenches ne width and depths shown on the enches in which pipe is to be laid ottom shall not be excavated entirely be finally excavated by hand tools all have a bottom shaped to support entire length by firm and undisturbed hes, for which bedding is required, e required depths using machinery. ectly on ledge, hard shale or a very en an unstable trench bottom is wn Water Department determines that ipe adequately, an additional depth refilled to the pipe invert with e contractor's expense. Pipeline uring the laying of pipe. Wood	
		ll be removed prior to backfilling. edures can be found in AWWA	
В.	Bedding material shall c conforming to ASTM D23	onsist of crushed or natural stone 321.	
	<u>Sieve</u> 1"Screen	Percent Passing 100%	
	34" Screen 1⁄2" Screen 36" Screen No. 4 Sieve	$100\% \\ 90 - 100\% \\ 40 - 70\% \\ 0 - 15\% \\ $	
C.	-	terial shall be Class II material (ASTM an, granular material (sand), particle follows:	
	Sieve	Percent Passing	2.1
	No. 4 No. 100 No. 200	100% 30% 12%	
2.11	PIPELINE INSULATION		
	over the crown, that crown on the plans, shall be plinstallation of two inchestruded polystyrene insustall be the the lesser of the sheets shall be place after placement of four medium or coarse sand six inches $(4" - 6")$ aboverlapped so there is no penetrate. Care shall be compaction over the polysty comprehensive strength no cases shall the water cover over the top of the sheets.		
	Polyethylene pipe encase	ment may be required in areas of conform to current ANSI/AWWA	2.1
	C105/A21.5 Specification for the polyethylene film laminated virgin polyethy	s. Minimum material requirements shall be high density, cross dene 4 mil film. The Town Water right to specify Polyethylene pipe,	
	the pipe or fittings and material and shall be in the above ANSI/AWWA s		
		nd Cement concrete of 3,000 psi	
	specification for transit concrete quality. A ma	essive strength. ASTM C-94 mixed concrete shall control the ximum water cement ratio of 6 maximum slump of four inches (4")	
2.14	FIRE HYDRANTS AND HY		
Α.	A-423 or Kennedy K-8 C502 with the following		
	 Main Valve Opening: Nozzle Arrangement: 	5 1/4 inches Two 2 1/2 inch Hose Nozzles with	
		nread (NST)	
	3. 4" Storz nozzle in p 4 1/2 inch Pumper	lace of or as an attachment to: One Nozzle with National Standard Thread	
	 4" Storz nozzle in p 4 1/2 inch Pumper (NST). 4. Inlet Connection: 6 i 		
	 4" Storz nozzle in p 4 1/2 inch Pumper (NST). Inlet Connection: 6 i equivalent retaining of 	Nozzle with National Standard Thread Inch Mechanical Joint, "Mega—Lug" or	

- 7. Depth of Bury: Six-foot cover. The hydrant shall have at least 15 inches and no more than 21 inches between the bottom of the steamer cap and the ground.
- 8. Drain: The hydrant shall be non-draining or have the drains permanently plugged.
- 9. Color: Red enamel
- 10. Other: Hydrants shall be compression type closing with the pressure. Hose and pumper nozzles shall be 1/4 turn type secured by stainless steel or corrosion resistant pins or screws. Pressure seals behind the nozzle flanges shall be "O" rings. A breakable coupling retained in place by stainless steel or corrosion resistant pins shall make the union between the upper and lower stems. The two-piece traffic flange shall be held in place by nuts and bolts. The upper barrel shall be able to rotate 360 degrees without removing any bolts. Hydrant flags shall be required and supplied for each hydrant. Wherever a traffic hazard appears to exist, curbing and/or bollards shall protect the hydrant.
- For single-family house subdivisions, there will be at least one hydrant at each intersection and a maximum of five hundred feet (500') between hydrants with a minimum water flow of 500 gallons per minute (gpm) at the flow hydrant with a 20-psi residual pressure at the residual hydrant. Hydrants should be located immediately adjacent to street property lines. A 20' x 20' easement will be required around all hydrants. No structures or plantings are to be placed within a 20' x 20' area of any hydrant.
- Where dead-end mains occur, they shall be provided with a fire hydrant if flow and pressure meet minimum requirements. If flows and pressure are not sufficient, then an approved flushing hydrant or blow off shall be installed for flushing purposes. Flushing devices should be sized to provide flows which will give a velocity of at least 2.5 feet per second in the water main being flushed. The open end of a blow off must be capped and terminate at least eighteen inches (18") above grade.
- When set in lawn space between the curb and sidewalk, no portion of the hydrant or nozzle cap will be less than one foot off the gutter face of the curb or edge of the sidewalk. Hydrants shall be a minimum of four feet (4') and a maximum of six feet (6') from the edge of the sidewalk to the closest point on the hydrant when placed behind the sidewalk. In the absence of a curb or sidewalk, no hydrant shall be placed more than six feet (6') from the edge of pavement. Hydrants shall be located so as to provide complete accessibility and minimize the possibility of damage from vehicles or injury to pedestrians.
- HYDRANT ASSEMBLIES
 - Hydrant assemblies shall consist of an anchor tee, a six inch (6") mechanical joint gate value conforming to the above specifications, the appropriate length of six inch (6") Ductile Iron Cement Lined, Class 52 pipe, all necessary anchor couplings and approved restraining glands, the fire hydrant and appropriate thrust block.
- Care shall be taken to prevent damage to hydrants and appurtenances during handling and installation. All materials shall be carefully inspected for defects in workmanship and materials; all debris and foreign material cleaned out of the hydrant bowl; all operating mechanisms operated to check their proper functioning, and all nuts and bolts checked for tightness. All hydrants shall be carefully incorporated in the water main and supported in their respective positions free from distortion and strain. Hydrants shall be set plumb. All hydrants shall be oriented to most efficiently allow fire truck access and connection for emergency purposes. They shall be installed away from the curb line at sufficient distance to avoid damage from or to vehicles. Traffic model hydrants shall be installed so the breakaway flange is not less than two inches (2"), nor more than six inches (6") above the established grade, according to manufacturer recommendations. Hydrant locations are subject to the approval of the Town Water Department and the appropriate municipality's fire department. Installation for fire hydrants can be found in AWWA Standard C600.
- SERVICE CONNECTIONS
- Service lines shall be installed so as to run perpendicular, in a straight line from the water main to the curb stop.
- Each service shall consist of a corporation, curb stop, copper tubing and a curb box with a cast iron or stainless steel service rod. Service lines from three-quarter to two inch (3/4" to 2") shall be copper tubing from the corporation stop to the curb stop. Copper tubing shall be type "K", soft temper, conforming to ASTM B88. The name or trademark of the manufacturer and type shall be stamped at regular intervals along the pipe. Copper service pipe shall be one piece from the corporation to the curb stop. The minimum service for a single-family residence shall be three-quarter inch (3/4"). The minimum service for a duplex shall be one inch (1").
- Corporations shall be AY McDonald or Cambridge Brass Low-Lead and manufactured in accordance with AWWA C800. Corporations shall have threads per AWWA C800 Table 7 / Figure 2, at the inlet and a compression type fitting at the outlet. Both inlet and outlet shall be the same size. Three-quarter inch and one-inch corporations shall be directly tapped into ductile iron pipe six inches (6") and larger in diameter. Larger size corporations up to two inches (2") shall use a tapping saddle. Pipe less than six inches (6") shall require the use of a tapping saddle and corporation. Corporations shall be used for all taps up to two inches (2"). In no instance, except when a tapping sleeve and valve are used, shall a tap be made without a corporation. Corporations shall be Mueller 110 (3/4" - 1"), or Mueller H 15013 (1 1/2" - 2"). A connection made to a pipe that requires a tapping saddle or is not ductile iron will have a body with a suitable outlet, seal, and suitable means for attachment to the main. The body shall be made to conform to the outside configuration of the main. The service saddle shall be designed to provide a drip tight connection. The body shall be Teflon or Epoxy coated with stainless steel strap(s), bolts, nuts, and mechanism for attaching to the pipe barrel.
- Curb stops shall be a ball valve type with a minimum allowable pressure rating of 300 psi and be manufactured in

accordance with AWWA C800. The curb stop shall open left, have a positive stop, be full port, provide drip-tight shutoff in the closed position and be of the tee design or flat design. No curb stop shall have the ability to drain the service line. Both the inlet and outlet of the curb stop shall have compression type fittings. The tee head of the curb stop shall have the provision for the connection of a service rod. Curb stops shall be AY McDonald or Cambridge Brass Low-Lead, or approved equal. The curb stop shall rest on a four inch by eight inch by sixteen-inch (4" x 8" x 16") concrete block for support. Curb stops shall be installed just inside the municipality R.O.W.

- E. Curb boxes shall be of sliding adjustable type capable of adjusting from five feet to six feet (5' - 6') (Erie Style). The base of the box shall be arch type so as to prevent the box from resting on the curb stop. The adjustable upper section shall be one inch (1") diameter for use with 3/4"and 1" curb stops. For larger curb stops, the upper section shall be 1 1/4" in diameter. Stationary rods affixed to the key of the curb stop with a brass pin shall be thirty inches (30") in length for 3/4" and 1" curb stops and twenty-four inches (24") for large curb stops. Curb box rods may be cast iron or stainless steel, as determined by the Town Water Department. The word "WATER" shall be inscribed on the cover of the box.
- F. Services greater than 2" diameter shall be constructed using C900 PVC pipe in accordance with the requirements set forth in Section 2.02 on Sheet C7.3

PART 3 - EXECUTION 3.01 INSTALLATION

- A. Contractors shall notify the Town Water Department and Dig Safe at least seven days prior to any work on the water system.
- B. Skilled workers experienced in such work shall install all items. Tools shall be adequate for the work and in good condition so as to produce good, clean cut threads of the correct size, pitch, and taper.
- C. Installation of all water lines shall be in accordance with the latest version of AWWA C600 or AWWA C605, as applicable, current edition.
- D. Connection to an existing water main shall be done under the supervision of and with the approval of the Town Water Department. It is the applicant's, developer's, or owner of record's responsibility to secure ALL necessary connection permits and pay ALL applicable fees to make the connection, and to coordinate all parties involved in the process. The engineer and the Town Water Department shall be notified at least two working days in advance of the intended connection time. No existing valves, hydrants, curb stops, etc. shall be operated without prior approval of the Town Water Department. The Town Water Department shall operate all valves initially to ensure the integrity of the valve. The Town Water Department may then allow the contractor to operate those valves. Any damage occurring after the use of any valve operated by the contractor shall be the contractor's responsibility.
- E. Care shall be taken to prevent damage to valves and other appurtenances during handling and installation. All materials shall be carefully inspected for defects in workmanship and materials; all debris and foreign matter cleaned out of valve openings, etc.; all operating mechanisms operated to check their proper functioning, and all other nuts and bolts checked for tightness. Valves and other equipment, which do not operate easily, or are otherwise defective, shall be replaced. All valves shall be carefully incorporated into the water main and supported in their respective positions free from all distortion and strain. Valves and valve boxes shall be set plumb. Valve boxes, besides being plumb, shall be centered directly over the valves.
- F. All pipes showing cracks shall be rejected. If cracks occur in the pipe, the contractor may, at his own expense and after approval of the Town Water Department, cut off cracked portions at a point at least twice the pipe diameter from the visible limits of the crack and use the sound portion of the pipe.
- G. All water mains shall have no less than six feet (6') of cover unless waived by the Town Water Department. The pipe shall be laid to conform to the lines and grades indicated on the Department. The Town Water Department may restrict work before November 15 and after April 1 during adverse weather conditions. The Town Water Department may not allow excavating for water mains during the winter months except by special permission for emergencies. Each pipe shall be laid so as to form a close joint with the next adjoining pipe and to bring the inverts continuously to the required grade. In no cases shall the waterline have less than four feet (4') of cover over the top of the pipe.
- H. Temporary support, adequate protection, and maintenance of all underground structures, drains, sewers and other obstructions encountered in the progress of the work shall be provided at all times. If utility service is interrupted as a result of work for the project, the contractor shall immediately restore service by repairing the damaged utility at the contractor's expense.
- I. At all times, when pipe laying is not actually in progress, the open ends of the pipe shall be closed by temporary watertight plugs or by other approved means. If water is in the trench when work is resumed, the plug shall not be removed until all danger of water entering the pipe has passed. During construction, the contractor shall conduct operations so as to prevent the accumulation of water, ice, and snow in the vicinity of excavations or in the vicinity of excavated areas, and to prevent water from interfering with the progress and quality of the work.
- J. Under no conditions shall water be allowed to rise in open trenches after pipe has been laid.
- K. Accumulated water, ice, and snow shall be promptly removed and disposed of by pumping or other approved means. Disposal shall be carried out in a manner that will not create a hazard to public health, nor cause injury to public or private property, work completed or in progress, or public streets. Disposal shall not cause any interference in the use of streets and roads by the public. Pipes under construction shall not be used for drainage of excavations.

- L. Any deflection of joints in pipe up to twelve-inch (12") diameter shall be within the limits specified by the manufacturer, but not to exceed five degrees or nineteen inches (19") per eighteen feet (18') of pipe length.
- M. Concrete thrust blocks shall be installed on all hydrants, plugs, tees, and bends deflecting $11 \ 1/4$ degrees or more. Concrete thrust blocks shall be used in conjunction with "Mega-Lug" restraining glands or equivalent. Care shall be taken to ensure that concrete will not come into contact with flanges, joints, or bolts. The required area of thrust blocks shall be indicated on plan typicals and approved by the Town Water Department. Concrete shall be placed against undisturbed soil. Wooden side forms or equal shall be provided for thrust blocks. No backfilling shall be allowed until concrete masonry has set sufficiently. Where directed by the Town Water Department or engineer, concrete encasement of the waterline may be made for stream crossings and similar purposes. Where required on the plans or as directed by the Town Water Department or engineer, a concrete cradle shall be used to bolster and strengthen the pipe. The Town Water Department or his designee shall inspect all thrust blocks prior to backfilling.
- N. All trenching safety standards shall be in conformance with all applicable State and Federal guidelines. The contractor shall be solely responsible for any safety citations by State or Federal inspectors.
- O. There shall be no physical connection between the distribution system and any pipes, pumps, hydrants, or tanks that are supplied with water that is, or may be, contaminated.
- P. As necessary, temporary PVC markers shall be supplied at all gate valves, curb boxes, and at the end of water lines to a minimum of twelve inches (12") above finish grade until accepted by the Town Water Department.
- Q. All surplus material and debris shall be removed as the project progresses, leaving all areas clean and presentable.
- R. Unless otherwise required, all paving and sidewalks that may be damaged during construction shall be replaced with the same kind of material that previously existed.
- S. The contractor shall be responsible for proper protection of persons and property on the project. The contractor shall barricade open holes and depressions occurring as part of the work, and post warning lights on adjacent property to or with public access.
- T. Warning lights shall be operated during hours from dusk to dawn and as otherwise requested.
- U. The contractor shall protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, washout, and other hazards created by construction operations.
- V. No water lines shall be installed after November 15 or before April 1 without prior approval of the Town Water Department.

3.02 BACKFILLING

- A. Trenches shall be backfilled to subgrade with, wherever possible, material excavated from the trench, and shall be done only after the approval of the Town Water Department. Material for backfilling shall be free of roots, stumps, and frost. Backfill shall not be placed on frozen material. Materials used for backfilling trenches shall be free of stones measuring more than twenty four (24) pounds. No stones measuring over three inches (3") in the longest dimension shall be placed within one foot (1') of the pipeline being backfilled. Stones found in the trench shall be removed for a depth of at least six inches (6") below the bottom of the pipe. In general, use of blasted rock as trench backfill will not be permitted.
- B. Backfill material shall be tamped in layers around the pipe to a sufficient height above the pipe to adequately support and protect the pipe. Backfill for pipelines shall be placed in six inch (6") lifts, each lift being compacted to not less than 95% of maximum dry density as determined by the AASHTO-T-99 Standard Proctor. If conditions warrant, the backfilling of trenches may be done with mechanical equipment. Particular precautions shall be taken in the placement and compaction of the backfill material in order not to damage the pipe, pipe coating or structure. The backfill shall be brought up evenly. Around valve boxes, the backfill shall be tamped to a distance of four feet (4') on all sides of the box, or to the undisturbed trench face, if less than four feet (4'). Backfilling in all public roadways shall be so compacted as to leave no depression in the road. Additional backfill requirements may apply within State or local Highway Right-of-Ways. All public road surfaces shall be restored to a condition at least equal to that which existed prior to the start of construction. Precautions shall be taken against undue damage to existing surface materials.
- C. No compacting shall be done when the material is too wet to be compacted properly. At such times the work shall be suspended until the previously placed and new materials have dried out sufficiently to permit proper compaction, or such other precautions are taken as may be necessary to obtain proper compaction.
- D. Surplus excavated materials shall be disposed of in a satisfactory manner. Surplus material or spoil shall be removed promptly and disposed of so as not to be objectionable to abutters or the general public.
- E. Trenches that have been improperly backfilled, enclosed or covered before inspection of fittings and joints shall be reopened and re-backfilled at the contractor's expense.
- 3.03 WATER/SEWER SEPARATION
- A. Water mains crossing sewers shall be laid to provide minimum vertical distance of eighteen inches (18") between the outside of the water main and the outside of the sewer line. This shall be the case where the water main is either above or below the sewer. At crossings, one full length of pipe shall be located so both joints will be as far from the sewer as possible. This vertical separation shall be maintained for that portion of the water main located within ten feet (10') horizontally of any sewer it crosses. Water mains must be laid at least five feet (5') horizontally from any existing or proposed storm sewer and ten feet (10') from any existing or proposed sanitary sewer.

C.	When it is impossible to obtain horizontal and vertical separation on new installations, both the water main and sewer main shall be constructed of waterworks material with watertight joints and shall be pressure tested before backfilling. A PVC sleeve may be required for one or both mains in addition to the waterworks material. Lines may also be encased in concrete as required by the Retail Department. No water main shall pass through or come in contact with any part of a sewer manhole. Distribution lines shall not be placed closer than fifty feet (50') horizontal distance from any septic tank or leach field unless approved by the VT Water Supply Rule Provisions under Chapter 21.8.6.4 or the Town Water Department. Force main crossing shall be arranged so that at least one full length of sewer pipe is centered above or below the water line, with the sewer joints as far as possible from the water main standards for a minimum of twenty feet (20') on either side of the crossing. The section constructed to water main standards shall be pressure tested to maintain 50 psi for fifteen (15) minutes without leakage prior to backfilling. In those areas that proper cover cannot be provided, proper insulation shall be installed.	CIVIL ENGINEERING ASSOCIATES. INC. 10 MANSFIELD VIEW LANE, SOUTH BURLINGTON, VT 05403 P: 802-864-2323 FAX: 802-864-2271 web: www.cea-vt.com COPYRIGHT © 2019 – ALL RIGHTS RESERVED DRAWN MAB CHECKED DSM APPROVED DSM CLIENT:
E.	Sewer and waterline separation shall conform to all VT Water Supply Rule requirements, and installed in accordance with the latest edition of the "Ten States Standards — Recommended Standards for Water."	IRELAND DEVELOPMENT, LLC
3.04	TESTING AND DISINFECTION	
Α.	All water mains shall be constructed, tested and disinfected in accordance with AWWA Standards C-600, C-605, C651 and The Vermont Water Supply Rule. All tests shall be conducted by and at the expense of the Contractor.	193 INDUSTRIAL AVENUE WILLISTON, VERMONT 05403
	 The Contractor shall furnish all gauges, testing plugs, caps and all other necessary equipment and labor to perform leakage and pressure tests in sections of an approved length. Each valved section, including hydrant laterals, or a maximum length of 1,000 feet of pipe shall be tested. The Contractor shall provide at his own expense any additional taps to the water line necessary to perform the pressure and leakage test between valves. All didinfection/testing shall be completed by an independent third party unless otherwise approved by the Engineer or local municipality. 	PROJECT: SUNDERLAND
	2. All water required for testing shall be potable. All testing shall be conducted in the presence of the Engineer.	FARMS
	3. The Contractor shall make the necessary provisions to tap the pipe at the high point to release all air and shall plug same after completing the test. Hydrants or blowoffs located at high points may be used for air release in lieu of taps if approved by the Engineer.	COMMUNITY
	4. For the pressure test, the Contractor shall develop and maintain for two hours, 150% of the working pressure, or 200 psi, whichever is greater. Failure to hold within 5 psi of the designated pressure for the two hour period constitutes a failure of the section tested.	SEVERANCE ROAD COLCHESTER, VT
	5. No pipe installation shall be accepted if the leakage is greater than that determined by the following. Maximum allowable leakage will be:	
	$L = \underbrace{SD \sqrt{P}}_{148,000} \text{ or } L = \underbrace{ND \sqrt{P}}_{7,400}$	
	whichever is less	
	 Where: L = allowable leakage, in gallons per hour S = length of pipe tested, in feet D = nominal diameter of the pipe, in inches P = average test pressure during the leakage test, in pounds per square inch (gauge). N = Number of joints in the pipeline tested 	
	All testing shall be conducted in accordance with AWWA C600 (latest edition)	
	 Should any section of pipe fail either the pressure or leakage test, the Contractor shall do everything necessary to locate and repair or replace the defective pipe, fittings, or joints at no cost to the Owner. 	
	 Disinfection: Disinfection of the pipeline shall be directed by the Engineer and at the Contractor's expense. AWWA Standard C-651 shall be used as a basis for the disinfection process. 	DATE CHECKED REVISION
В.	The Engineer or Town Water Department will require as minimum:	
	 Complete flushing of the pipeline to wash out all dirt, debris, etc. which may have accumulated in the pipeline during construction. A reducing agent shall be used at the point of flushing to eliminate the free chlorine residual per the direction of the Town Water Department. 	
	 Following flushing to clean clear water, the Contractor will add chlorine through continuous feed to the entire pipeline volume of water such that the water will have not less than 25 mg/L free chlorine, and let the mixture set for at least 24 hours. 	SITE
	 After the 24-hour duration, the water in the pipeline shall be tested for residual free chlorine and must contain a minimum of 10 mg/L chlorine. If less than 10 mg/L are found, then the disinfection procedure shall be repeated until at least 10 mg/L chlorine residual is indicated by test. 	SPECIFICATIONS
	4. Upon successful completion of step 3 above, the pipeline shall be flushed again until the chlorine concentration in the pipeline is no higher than that prevailing in the supply system. A reducing agent shall be used to eliminate the free chlorine residual in the flushing process per the direction of the Town Water Department.	date drawing number 11/01/2019
C.	After final flushing and before the new water main is connected to the distribution system, two consecutive sets of acceptable samples, taken at least 24 hours apart, shall be collected from the new main, and submitted to the Vermont Health Department for analysis. At least one set of samples	SCALE NONE PROJ. NO. 14134

shall be collected from every 1,000 feet of the new water main, plus one set from the end of the line and at least one set from each branch. All samples shall show the absence of coliform organisms and, if required, the presence of a chlorine residual (AWWA C651-99). If the initial disinfection fails to produce samples which pass the V.S.H.D. requirements for potable drinking water, then the new main shall be reflushed and shall be resampled until satisfactory test results are obtained.

- D. Upon satisfactory results by the Vermont State Health Department, the pipeline may be placed in service. All costs for water, materials, equipment and labor to perform the required testing disinfection, and flushing of the pipeline shall be paid by the Contractor.
- 3.05 SUBMITTAL OF TEST RESULTS
- A. A. The Applicant or Project Engineer shall be responsible for submittal of test results to the Town Water Department. The Applicant or Project Engineer shall also provide a letter to the Town Water Department certifying that the water system has passed all tests, is constructed in accordance with the approved plans, except as may have been modified by approved Change Order, and is in condition to be placed in service. <u>Submittal of all test results shall be required prior to</u> the water main being placed into service.

3.06 FINAL INSPECTION

elevations.

- A. For one year from the date the new system is placed into service, the applicant's developer/contractor will be responsible for any necessary repairs or corrections as part of the project warranty. At the end of a one-year period, an inspection will be performed by the Town Water Department prior to the system owner assuming ownership of any of the lines and appurtenances. The contractor shall correct any punch list items accumulated during the inspection after receipt of this list. Incomplete work on the system shall not be included in the initial inspection, but shall be inspected as the project continues. The contractor shall repair, replace, or retest promptly as directed by the Town Water Department and without further charges, all work equipment, materials or parts, which may fail during the one year warranty period.
- B. A final walk-through inspection shall be conducted by the Town Water Department prior to the water system being accepted for ownership by the system owner. This inspection shall include but not be limited to:
- 1. Valves, hydrants, and curb stops operating properly.
- 2. Valve boxes and covers set plumb and at proper
- 3. Proper hydrant nozzle height above grade.
- 4. Proper hydrant opening direction, nozzle thread, and barrel color.
- 5. Proper distance from the face of the curb of hydrant nozzles.
- 6. Hydrant flags meeting Town Water Department specifications installed on each fire hydrant at the time of installation.
- 7. Static and residual hydrant pressures and flow rates.
- 8. Curb boxes inside ROW, set to grade, containing operating rod, and plumb.
- 9. Tie information and record drawings complete and submitted.
- 10. Material testing results, lab reports, manufacturers' certificates, and leakage test results complete and on file.
- 11. General appearance and restoration.
- 12. Submittal of O&M manuals in hard copy and Adobe Acrobat Reader (.pdf) format.
- 13. Submittal of As-Builts in hard copy format and Auto-CAD.DWG Version 2000 format or newer within 14 days of completion.

3.07 GENERAL INFORMATION

- A. All persons taking water must keep the fixtures and service pipe within their own premises in good repair and fully protected from frost, and must prevent unnecessary leakage of water. The Town Water Department shall not be liable for leakage of hydrants, pipes or fixtures upon the premises of any consumer, nor for obstructions therein by freezing or otherwise, nor for damages resulting from any of the forgoing causes. All leaks that are on the building side of the curb stop will be the owner's responsibility and repaired at the owner's expense.
- B. Water rates shall be collected for all water used until the water is shut off at the curb stop by the Town Water Department. No abatement of water rates will be allowed by reason of disuse, diminished use, or vacancy of premises without proper notice to the Town Water Department.
- C. The Town Water Department or system owner shall not be liable for any injury, loss or damage of whatever nature occasioned by the failure to maintain a constant or uniform pressure in the water mains, or for damages occasioned by or growing out of a stoppage of said water by frost or other cause, or for damage occasioned by or growing out of an insufficient supply of the same, or for accident or damage of any kind caused by or growing out of the use or failure of said water.
- D. No person shall open any hydrant or draw water there from except the Town Water Department personnel or persons under their direction, or the officers or designees of the municipal fire department and members of the fire companies under their direction for fire purposes, or those individuals who have been granted approval on a hydrant use application by the Town Water Department, in which case, all such usage shall be metered. Fines for unauthorized use of any hydrant or connection may be incurred, according to the Rules and Regulations of the Town Water Department.
- E. One curb stop and one water meter shall be installed for each individual dwelling unit, condominium unit, apartment unit, commercial or office occupancy. Exceptions may be permitted in cases where a condominium association signs a

binding agreement to be responsible for all collection of water bills. In cases where condominiums are converted separate apartments, separate curb stops and water me shall be installed for each unit. Town Water Department employees shall install all water meters. Under no circumstances are plumbers or persons other than thos authorized by the Town Water Department permitted to water on or off at the curb stop. The water will not in instance be turned on to any premise for use until the Water Department has suitably attached a meter.

F. The owner of the premises shall be responsible for all wo payments. A change of tenants or premises will not reli the owners from payment of a back bill.

STORM WATER PONDS

PART 1 – GENERAL

- 1.01 SUMMARY
- A. Section includes:
- 1. Construction of storm water detention pond.

PART 2 - PRODUCTS

- A. Compacted Fill/Granular Borrow: The material for the f shall be obtained from the designated areas and shall conform to the requirements of Section 02210 - Site Earthwork. The material shall be free from stumps, woo brush, roots, sod, rubbish, and other matter that may It should be free of stones over 2 inches in diameter wh compacted by hand or mechanical tampers, or over 6 ir in diameter where compacted by rollers or other equipm Frozen material shall not be placed in the fill, nor shall fill material be placed on a frozen foundation.
- B. Stone Fill: Stone fill shall conform to the requirements Type I Stone Fill as specified in Section 02439 - Stone
- C. Riser and Drain Pipe: Riser and drain pipe shall conform the requirements of the Drainage section.

PART 3 - EXECUTION

- 3.01 SITE PREPARATION
- A. The area to be covered by the pond and embankments be cleared of all trees, brush, stumps, roots and other objectionable material. The area to be covered by the embankment and the surface of the borrow area shall t stripped of all grass, roots, organic materials, or other objectionable materials to a depth that will insure the removal of any materials which will prevent bond betwee foundation and the fill. Material cleared shall be dispose in accordance with Section 02110 - Site Clearing. When embankment will be on a hillside, the slope of the origin ground on which the embankments are to be constructe shall be stepped and properly drained as the fill is constructed so that adverse movements of the slopes of occur.
- 3.02 COMPACTED FILL/GRANULAR BORROW
- A. Preparation of Foundation: Upon completion of the clea operation and just prior to placing the fill material on a portion of the foundation, that portion shall be scarified, plowed, or disked to a depth of 3 inches. All objection material exposed by this operation shall be disposed of outside the limits of the fill.
- B. Placing and Spreading Material: The placing and spreadi material shall be started at the lowest part of the sect under construction and the fill constructed in layers of inches. The layers shall slope slightly towards the reser to prevent puddles and provide for faster runoff in case rain. Where possible, the layers shall extend over the en area of the fill. The distribution and gradation of the materials throughout the fill shall be such that there be lenses, pockets, streaks, or layers of material differing substantially in texture or gradation from the surroundin material. The most porous borrow material shall be place on the downstream portions of the embankment.
- C. Compaction: All fill shall be compacted to 95 % maxim density per ASTM D-698.
- D. Limits: The embankment shall be constructed where loc and as detailed in the Contract Plans. Side slope shall vertical to 3 horizontal.
- E. Revisions to the proposed design of the detention pond be necessary if, in the opinion of the Engineer, unsuitabl material is found at the pond location.
- 3.03 SLOPE PROTECTION
- A. Placement: Stone Fill Type I shall be placed at location indicated on the plans to a minimum thickness of 1'-0''one course in a manner that will result in a reasonably graded surface. Care shall be taken in the placing to a displacing of the underlying material. The stones shall placed and distributed so that there will be no accumula of either the larger or the smaller stones. Re-arranger of the stone fill by hand labor or mechanical equipment be required to obtain the specified results.
- 3.04 LANDSCAPING
- A. At completion of grading, slopes, ditches, and all disturbed areas shall be smooth and free of pockets with sufficient slope to ensure drainage. All disturbed areas shall receive a minimum of four inches (4") of topsoil and shall be seeded, fertilized, limed, and mulched in accordance with the followina:
- 1. Seed mixture in all areas shall be urban mix conforming to the table below. For seeding between September 1 and October 1, winter rye shall be used at an application rate of 100 pounds per acre.
- 2. Fertilizer shall be standard commercial grade conforming to the State Fertilizer Law and to the Standards of the Association of Official Agricultural Chemists. Dry fertilizer, if used, shall be applied at the rate of 500 pounds per acre. Liquid fertilizer, if used, shall be applied in a 1-2-1ratio with the minimum rate to include 100 pounds of nitrogen, 200 pounds of phosphate, and 100 pounds of potash per acre.
- 3. Limestone shall conform to all State and Federal

of ed into neters	regulations and to the Standards of the Association of Official Agricultural Chemists. The limestone shall be applied at a rate of one ton per acre as directed.	2.1 SEED				
t turn any Town	 Within twenty-four (24) hours of application of fertilizer, lime, and seed, the surface shall be mulched with a hay mulch. Mulch shall be spread uniformly over the area at a rate of two (2) tons per acre. All turf establishment shall be performed in accordance with the Vermont Standard Specifications for Construction, Section 651. 	A. Conservation Seed Mix: Minimum Minimum <u>Kind of Seed Purity Germination Lbs/Acre</u> Creeping Red Fescue 98% 85% 22.5 Tall Fescue 95% 95% 22.5 Red Top 95% 90% 3 Birdsfoot Trefoil 98% 85% 9				
water elieve		Birdsfoot Trefoil 98% 85% 9 Annual Ryegrass 95% 85% <u>3</u> TOTAL = 60				
	URBAN MIX GRASS SEED	2.2 INORGANIC SOIL AMENDMENTS				
	Percentage Pounds Live Seed <u>Type of Seed</u> <u>By Weight Per Acre</u> 37.50% 45.0 Creeping Red Fescue	A. Lime: ASTM C 602, agricultural limestone containing a minimum of 85 percent calcium carbonate equivalent and as follows:				
	37.25% 37.5 Kentucky Blue Grass, Winter Hardy, Perennial Rye	1. Class: T, with a minimum of 99 percent passing through No. 8 sieve and a minimum of 75 percent passing				
	31.25% 37.5 (variety Pennfine, Manhattan, or similar varieties)	through No. 60 sieve. 2.3 FERTILIZER				
fill	100% 120 pounds live seed per acre	A. Commercial Fertilizer: Commercial—grade complete fertilizer of neutral character, consisting of fast— and slow—release nitrogen, 50 percent derived from natural organic sources of				
od,	LANDSCAPE GRADING	urea formaldehyde, phosphorous, and potassium. B. Slow-Release Fertilizer: Granular or pelleted fertilizer				
decay. vhere inches	PART 1 – GENERAL 1.01 SUMMARY	consisting of 50 percent water-insoluble nitrogen, phosphorus, and potassium.				
nent. the	A. Section includes:	2.4 MULCHES				
s of e Fill.	 Finish grading; bring rough grade in areas to design elevations as shown on the drawings. 	A. Mulch: Provide air—dry, clean, mildew— and seed—free, hay or threshed straw of wheat, rye, oats, or barley.				
m to	 Topsoil: Work shall consist of furnishing, placing and shaping topsoil, or placing, spreading, and shaping topsoil form stockpiles or stripped areas. PART 2 - PRODUCTS 	B. Compost Mulch: Well-composted, stable, and weed-free organic matter, pH range of 5.5 to 8; moisture content 35 to 55 percent by weight; 100 percent passing through 1-inch sieve; soluble salt content of 2 to 5 decisiemens/m; not exceeding 0.5 percent inert contaminants and free of				
	2.01 TOPSOIL	substances toxic to plantings; and as follows:				
shall	A. Topsoil shall be loose, friable, reasonably free of admixtures	 Organic Matter Content: 50 to 60 percent of dry weight. PART 3 - EXECUTION . 				
earth be	of subsoil, free from refuses, stumps, roots, brush, weeds, rocks, and stones 1 1/4 inch in overall dimensions. The	3.1 PREPARATION				
en the sed of	topsoil shall also be free from any material that will prevent the formation of a suitable seedbed or prevent seed germination and plant growth. It shall contain not less than three (3) nor more than twenty (20) percent organic matter.	A. Protect structures, utilities, sidewalks, pavements, and other facilities, trees, shrubs, and plantings from damage caused by planting operations.				
ere the nal ed	Any material which has become mixed with undue amounts of subsoil during any operation at the source or during placing or spreading will be rejected and shall be replaced by the Contractor with acceptable material.	 Protect adjacent and adjoining areas from hydroseeding and hydromulching overspray. 				
do not	PART 3 - EXECUTION	Protect grade stakes set by others until directed to remove them.				
	3.01 SUBGRADE PREPARATION	B. Provide erosion—control measures to prevent erosion or				
aring any	A. Clean subgrade of all stumps, stones, roots, trash or other materials which might hinder proper tillage or spreading.	displacement of soils and discharge of soil-bearing water runoff or airborne dust to adjacent properties and walkways. C. Newly Graded Subgrades: Loosen subgrade to a minimum				
d, nable	B. All surfaces on which topsoil is to be placed shall be graded to a reasonably true surface and scarified by raking, discing or other approved means to a minimum depth of two inches before placing topsoil.	depth of 4 inches. Remove stones larger than 2 inches in any dimension and sticks, roots, rubbish, and other extraneous matter.				
ding of tion	3.03 PLACING TOPSOIL	 Apply fertilizer directly to subgrade before loosening. a. Delay mixing fertilizer with planting soil if planting will 				
6 rvoir	A. Minimum final depth of topsoil shall be 4 inches.	not proceed within a few days. b. Mix lime with dry soil before mixing fertilizer.				
e of entire e no	B. Place topsoil when seeding operations can closely follow spreading operations. Use topsoil in relatively dry state.	D. Finish Grading: Grade planting areas to a smooth, uniform surface plane with loose, uniformly fine texture. Grade to within plus or minus 1 inch of finish elevation. Roll and rake,				
ng aced	C. Topsoil shall be spread and shaped to the lines and grades shown on the plans, or as directed by the Engineer. The depth stated in the contract to which the topsoil is to be placed is that required after final rolling of the material has	remove ridges, and fill depressions to meet finish grades. Limit finish grading to areas that can be planted in the immediate future.				
num	taken place. All stones, roots and debris over 1¼ inch in diameter along with any sodding weeds and other undesirable material shall be removed.	E. Moisten prepared areas before planting if soil is dry. Water thoroughly and allow surface to dry before planting. Do not create muddy soil.				
ocated I be 1	D. After shaping and grading, all trucks and other equipment shall be excluded from the topsoiled area to prevent excessive compaction. The Contractor shall perform such	F. Before planting, restore areas if eroded or otherwise disturbed after finish grading.				
may	work as required to provide a friable surface for seed germination and plant growth prior to seeding.	3.2 APPLICATION RATES				
ble	E. It shall be the Contractor's responsibility to restore to the line, grade and surface all eroded areas with approved	A. When a soil test is not available, the following minimum amounts should be applied:				
20	material and to keep topsoiled areas in acceptable condition until the completion of the work.	 Agricultural limestone: 2 tons/acre. Nitragen (N): 50 lbs (care) 				
ns "in well	SEEDING	 2. Nitrogen (N): 50 lbs./acre. 3. Phosphate: 100 lbs /acre. 				
′well avoid be	PART 1 – GENERAL	3. Phosphate: 100 lbs./acre.				
be lations ement	1.1 Section Includes:	4. Potash: 100 lbs./acre.				
t may	A. Seeding.	a. This is the equivalent of 500 lbs./acre of 10-20-20 fertilizer or 1,000 lbs./acre of 5-10-10.				
	 Furnish all labor, materials and equipment to complete all seeding work as shown on the drawings and specified barrain 	5. Hay mulch: 2 tons/acre.				
rhad	herein.	3.3 SEEDING				

2. Except where otherwise shown or specified, the Contractor

been disturbed by the Contractor's operations.

Planting Restrictions: Seeding and initial fertilizing shall be

when the ground is frozen, excessively wet, or otherwise

with initial maintenance periods to provide required

maintenance from date of Substantial Completion.

done between May 1st and September 15th unless otherwise

authorized. Seeding shall not be done during windy weather or

untillable. If seeding is done during July or August, additional

mulch material may be required. Coordinate planting periods

A. Product Data: For each type of product indicated.

shall seed all areas where new contours are shown on the

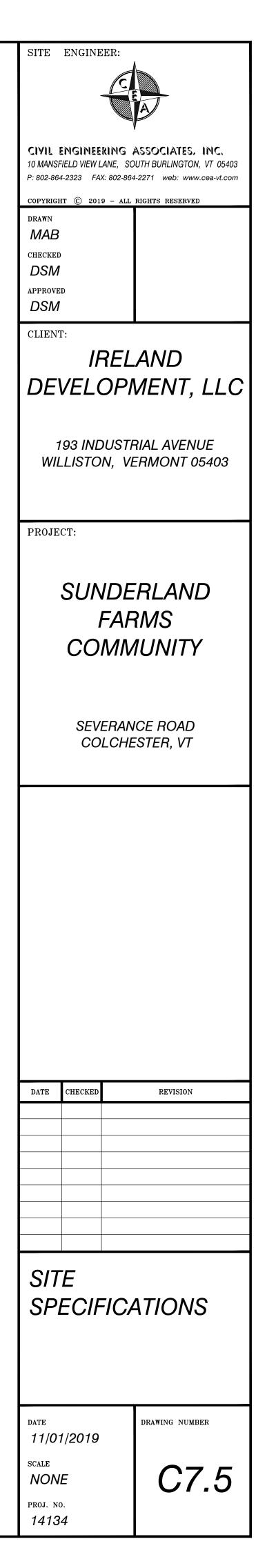
drawings and all areas where existing ground cover has

A. Sow seed with spreader or seeding machine. Do not broadcast or drop seed when wind velocity exceeds 5 mph. Evenly distribute seed by sowing equal quantities in two directions at right angles to each other.

1. Do not use wet seed or seed that is moldy or otherwise damaged.

- 2. Do not seed against existing trees. Limit extent of seed to outside edge of planting saucer.
- B. Rake seed lightly into top 1/8 inch of soil, roll lightly, and water with fine spray.
- C. Protect seeded areas with slopes exceeding 1:3 with erosion-control blankets installed and stapled according to manufacturer's written instructions.
- D. Protect seeded areas from hot, dry weather or drying winds

PART 2 – PRODUCTS


1.3 PROJECT CONDITIONS

1.2 SUBMITTALS

by applying mulch within 24 hours after completing seeding operations. Soak areas, scatter mulch uniformly to a depth of 3/16 inch, and roll surface smooth.

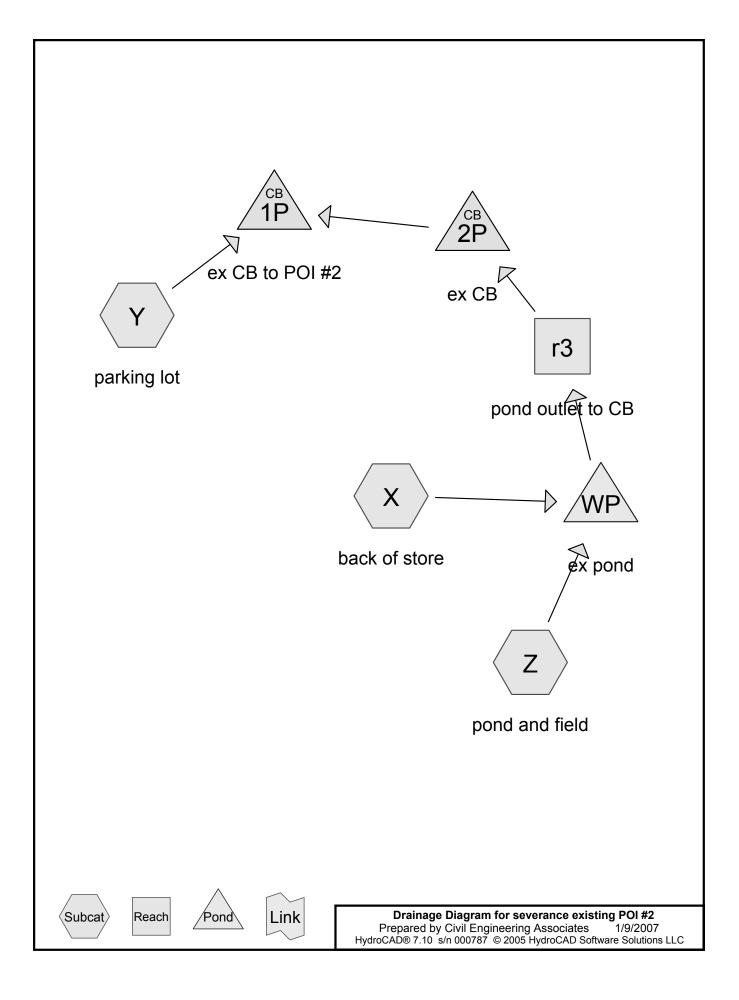
3.4 HYDROSEEDING

- A. Hydroseeding: Mix specified seed, fertilizer, and fiber mulch in water, using equipment specifically designed for hydroseed application. Continue mixing until uniformly blended into homogeneous slurry suitable for hydraulic application.
- 1. Mix slurry with fiber-mulch manufacturer's recommended tackifier.
- 2. Apply slurry uniformly to all areas to be seeded in a one-step process. Apply slurry at a rate so that mulch component is deposited at not less than 1500-lb/acre dry weight, and seed component is deposited at not less than the specified seed-sowing rate.
- 3.5 MAINTENANCE
- A. Maintain and establish seeding by watering, fertilizing, weeding, mowing, trimming, replanting, and other operations. Roll, regrade, and replant bare or eroded areas and remulch to produce a uniformly smooth lawn. Provide materials and installation the same as those used in the original installation.
- 1. In areas where mulch has been disturbed by wind or maintenance operations, add new mulch and anchor as required to prevent displacement.
- 2. Begin maintenance immediately after each area is planted and continue until acceptable lawn is established, but for not less than the following periods:
- a. Seeded Areas: 90 days from date of Substantial Completion.
- b. When initial maintenance period has not elapsed before end of planting season, or if seeding is not fully established, continue maintenance during next planting season.
- 3.6 SATISFACTORY CONDITIONS
- A. Installations shall meet the following criteria as determined by Engineer/Owner:
- 1. Satisfactory Seeded Area: At end of maintenance period, a healthy, uniform, close stand of grass has been established, free of weeds and surface irregularities, with coverage exceeding 90 percent over any 10 sq. ft. and bare spots not exceeding 5 by 5 inches.
- B. Use specified materials to reestablish area that do not comply with requirements and continue maintenance until areas are satisfactory.
- 3.7 CLEANUP AND PROTECTION
- A. Promptly remove soil and debris, created by work. Clean wheels of vehicles before leaving site to avoid tracking soil onto roads, walks, or other paved areas.
- B. Erect temporary fencing or barricades and warning signs as required to protect newly planted areas from traffic. Maintain fencing and barricades throughout initial maintenance period and remove after lawn is established.
- C. Remove nondegradable erosion-control measures after grass establishment period.

Severance Road PUD - Water & Sewer Allocations - WW Permit App

April 25, 2019

	Existing - Occupied - Connected									
Building	Address	ŀ	Residential		Retail/Office	Assembly	Day Care	Restaurant /	Wastewater	Water
Building	Address	1-Bdrm	2-bdrm	3-bdrm	Employees	(interior)	Students	Salon Seats	(gpd)	(gpd)
1	Dylan Avenue	0	0	0	0	0	0	0	0	0
2	Dylan Avenue	0	0	0	0	0	0	0	0	0
3	Shea Drive	0	0	0	0	0	0	0	0	0
4	Shea Drive	0	0	0	0	0	0	0	0	0
5	Shea Drive	0	0	0	0	0	0	0	0	0
6	Shea Drive	0	0	0	0	0	0	0	0	0
7	Stuart Avenue	0	0	0	0	0	0	0	0	0
8	Stuart Avenue	0	0	0	0	0	0	0	0	0
9	Stuart Avenue	0	0	0	0	0	0	0	0	0
10	Pegs Cove	0	0	0	0	0	0	0	0	0
11	Pegs Cove	0	0	0	0	0	0	0	0	0
Townhouse	S	0	0	0	0	0	0	0	0	0
	Infiltration							· · · · · ·	0	
								Connected	-	-


	Existing - Vacant									
Building	Addross	F	Residential		Retail/Office	Assembly	Day Care	Restaurant /	Wastewater	Water
Building	Address	1-Bdrm	2-bdrm	3-bdrm	Employees	(interior)	Students	Salon Seats	(gpd)	(gpd)
1	Dylan Avenue	0	0	0	0	0	0	0	0	0
2	Dylan Avenue	0	0	0	0	0	0	0	0	0
3	Shea Drive	0	0	0	0	0	0	0	0	0
4	Shea Drive	0	0	0	0	0	0	0	0	0
5	Shea Drive	0	0	0	0	0	0	0	0	0
6	Shea Drive	0	0	0	0	0	0	0	0	0
7	Stuart Avenue	0	0	0	0	0	0	0	0	0
8	Stuart Avenue	0	0	0	0	0	0	0	0	0
9	Stuart Avenue	0	0	0	0	0	0	0	0	0
10	Pegs Cove	0	0	0	0	0	0	0	0	0
11	Pegs Cove	0	0	0	0	0	0	0	0	0
Townhouse	25	0	0	0	0	0	0	0	0	0
	Infiltration								0	(
								Existing - Vacant	-	-

	Current Existing Plus Proposed Building X										
Duilding	Addross	F	Residential		Retail/Office	Assembly	Day Care	Restaurant /	Wastewater	Water	
Building	Address	1-Bdrm	2-bdrm	3-bdrm	Employees	(interior)	Students	Salon Seats	(gpd)	(gpd)	
1	Dylan Avenue	0	0	0	0	0	0	0	0	0	
2	Dylan Avenue	0	0	0	0	0	0	0	0	0	
3	Shea Drive	0	0	0	0	0	0	0	0	0	
4	Shea Drive	0	0	0	0	0	0	0	0	0	
5	Shea Drive	0	0	0	0	0	0	0	0	0	
6	Shea Drive	0	0	0	0	0	0	0	0	0	
7	Stuart Avenue	0	0	0	0	0	0	0	0	0	
8	Stuart Avenue	0	0	0	0	0	0	0	0	0	
9	Stuart Avenue	0	0	0	0	0	0	0	0	0	
10	Pegs Cove	0	0	0	0	0	0	0	0	0	
11	Pegs Cove	0	0	0	0	0	0	0	0	0	
Townhouse	S	0	0	0	0	0	0	0	0	0	
	Infiltration								0	0	
						Current E	xisting Plus	New Building X	-	-	
							Curr	ent Allocations	45,511	64,571	
							Reque	sted Allocation	45,511	64,571	

	Future Planned									
Duilding	Address	I	Residential		Retail/Office	Assembly	Day Care	Restaurant /	Wastewater	Water
Building	Address	1-Bdrm	2-bdrm	3-bdrm	Employees	(interior)	Students	Salon Seats	(gpd)	(gpd)
1	Dylan Avenue	0	0	0	22	0	0	0	286	286
2	Dylan Avenue	0	0	0	16	0	0	0	208	208
3	Shea Drive	16	0	0	50	0	0	0	2890	2890
4	Shea Drive	0	0	0	0	0	0	75	2025	2025
5	Shea Drive	4	32	0	0	0	0	0	7280	9520
6	Shea Drive	3	32	0	0	0	0	0	7140	9380
7	Stuart Avenue	4	25	3	0	0	0	0	6440	8640
8	Stuart Avenue	0	0	0	0	0	57	0	741	741
9	Stuart Avenue	0	0	0	66	0	0	0	858	858
10	Pegs Cove	0	0	0	32	0	0	0	416	416
11	Pegs Cove	0	0	45	0	0	0	0	9450	16200
Townhouse	25	0	0	30	0	0	0	0	6300	10800
	Infiltration								1945	C
							Future	e Planned Total	45,979	61,964

Total Needed at Full Build-ou

	(gpd)	(gpd)
ut	45,979	61,964

severance existing POI #2 Prepared by Civil Engineering Associate HydroCAD® 7.10 s/n 000787 © 2005 HydroC/	
Time span=2.00 Runoff by	-30.00 hrs, dt=0.02 hrs, 1401 points SCS TR-20 method, UH=SCS I method . Pond routing by Stor-Ind method
Subcatchment X: back of store	Runoff Area=45,426 sf Runoff Depth=1.91" Flow Length=100' Tc=7.4 min CN=87 Runoff=3.34 cfs 0.166 af
Subcatchment Y: parking lot	Runoff Area=34,113 sf Runoff Depth=2.45" Flow Length=180' Tc=1.9 min CN=93 Runoff=3.64 cfs 0.160 af
Subcatchment Z: pond and field	Runoff Area=265,370 sf Runoff Depth=1.40"

 Reach r3: pond outlet to CB
 Peak Depth=0.66'
 Max Vel=1.8 fps
 Inflow=4.63 cfs
 0.864 af

 n=0.050
 L=260.0'
 S=0.0115 '/'
 Capacity=2.88 cfs
 Outflow=4.60 cfs
 0.864 af

 Pond 1P: ex CB to POI #2
 Peak Elev=300.26'
 Inflow=4.80 cfs
 1.024 af

 18.0" x 60.0' Culvert
 Outflow=4.80 cfs
 1.024 af

 Pond 2P: ex CB
 Peak Elev=301.94'
 Inflow=4.60 cfs
 0.864 af

 18.0" x 135.0'
 Culvert
 Outflow=4.60 cfs
 0.864 af

Pond WP: ex pondPeak Elev=309.91' Storage=42,044 cfInflow=7.28 cfs0.878 afOutflow=4.63 cfs0.864 af

Total Runoff Area = 7.918 ac Runoff Volume = 1.038 af Average Runoff Depth = 1.57"

Flow Length=500' Tc=33.0 min CN=80 Runoff=6.82 cfs 0.712 af

Subcatchment X: back of store

Runoff = 3.34 cfs @ 11.99 hrs, Volume= 0.166 af, Depth= 1.91"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-30.00 hrs, dt= 0.02 hrs Type II 24-hr Q-10 Rainfall=3.20"

 A	rea (sf)	CN I	Description		
	6,377	98 I	Paved park	ing & roofs	
	21,750	89 (Gravel road	ls, HSG C	
	7,299	89 (Gravel road	ls, HSG C ((PLANTS)
	10,000	74 >	>75% Gras	s cover, Go	bod, HSG C
	45,426	87 \	Neighted A	verage	
			•	•	
Тс	Length	Slope	Velocity	Capacity	Description
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
0.8	50	0.0200	1.0		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 2.30"
6.6	50	0.0200	0.1		Sheet Flow,
					Grass: Short n= 0.150 P2= 2.30"
 7.4	100	Total			

Subcatchment Y: parking lot

Runoff = 3.64 cfs @ 11.92 hrs, Volume= 0.160 af, Depth= 2.45"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-30.00 hrs, dt= 0.02 hrs Type II 24-hr Q-10 Rainfall=3.20"

_	A	rea (sf)	CN E	Description		
		26,613	98 F	Paved park	ing & roofs	
_		7,500	74 >	-75% Gras	s cover, Go	ood, HSG C
		34,113	93 V	Veighted A	verage	
	τ.	1	0		0	Description
		Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.5	100	0.0167	1.1		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 2.30"
	0.3	50	0.0200	2.9		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	0.1	30	0.0600	3.7		Shallow Concentrated Flow, flow to cb
_						Grassed Waterway Kv= 15.0 fps
_						

1.9 180 Total

Subcatchment Z: pond and field

Runoff = 6.82 cfs @ 12.29 hrs, Volume= 0.712 af, Depth= 1.40"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-30.00 hrs, dt= 0.02 hrs Type II 24-hr Q-10 Rainfall=3.20"

Area (sf) CN Description						
14,500 89 Gravel roads, HSG C						
115,000 82 Row crops, SR + CR, Good, HSG C						
67,935 79 50-75% Grass cover, Fair, HSG C						
67,935 76 Woods/grass comb., Fair, HSG C						
265,370 80 Weighted Average						
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)						
11.7 150 0.0070 0.2 Sheet Flow, flow from cornfields						
21.3 350 0.0030 0.3 Cultivated: Residue<=20% n= 0.060 P2= 2.30" Shallow Concentrated Flow, flow to pond Woodland Kv= 5.0 fps Kv= 5.0 fps						
33.0 500 Total						
Reach r3: pond outlet to CB						
Inflow Area = 7.135 ac, Inflow Depth > 1.45" for Q-10 event Inflow = 4.63 cfs @ 12.55 hrs, Volume= 0.864 af Outflow = 4.60 cfs @ 12.58 hrs, Volume= 0.864 af, Atten= 0%, Lag= 2.0 min						
Routing by Stor-Ind method, Time Span= 2.00-30.00 hrs, dt= 0.02 hrs Max. Velocity= 1.8 fps, Min. Travel Time= 2.3 min Avg. Velocity = 0.7 fps, Avg. Travel Time= 6.2 min						
Peak Depth= 0.66' @ 12.58 hrs Capacity at bank full= 2.88 cfs Inlet Invert= 310.00', Outlet Invert= 307.00' 2.50' x 0.50' deep channel, n= 0.050 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 4.50' Length= 260.0' Slope= 0.0115 '/'						
Pond 1P: ex CB to POI #2						
Inflow Area = 7.918 ac, Inflow Depth > 1.55" for Q-10 event Inflow = 4.80 cfs @ 12.58 hrs, Volume= 1.024 af Outflow = 4.80 cfs @ 12.58 hrs, Volume= 1.024 af, Atten= 0%, Lag= 0.0 min Primary = 4.80 cfs @ 12.58 hrs, Volume= 1.024 af						
Routing by Stor-Ind method, Time Span= 2.00-30.00 hrs, dt= 0.02 hrs Peak Elev= 300.26' @ 12.58 hrs Flood Elev= 307.00' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (920.6 - 920.6)						
Device Routing Invert Outlet Devices						
#1 Primary 299.00' 18.0" x 60.0' long Culvert CMP, projecting, no headwall, Ke= 0.900 Outlet Invert= 296.60' S= 0.0400 '/' Cc= 0.900 n= 0.030, Corrugated metal						

n= 0.030 Corrugated metal

Primary OutFlow Max=4.80 cfs @ 12.58 hrs HW=300.26' (Free Discharge) —1=Culvert (Inlet Controls 4.80 cfs @ 3.0 fps)

Pond 2P: ex CB

Inflow Area	a =	7.135 ac, Inflow Dep	th > 1.45"	for Q-10 event	
Inflow	=	4.60 cfs @ 12.58 hrs	s, Volume=	0.864 af	
Outflow	=	4.60 cfs @ 12.58 hrs	s, Volume=	0.864 af,	Atten= 0%, Lag= 0.0 min
Primary	=	4.60 cfs @ 12.58 hrs	s, Volume=	0.864 af	-

Routing by Stor-Ind method, Time Span= 2.00-30.00 hrs, dt= 0.02 hrs Peak Elev= 301.94' @ 12.58 hrs Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Device	Routing	Invert	Outlet Devices
#1	Primary	300.35'	18.0" x 135.0' long Culvert CMP, projecting, no headwall, Ke= 0.900 Outlet Invert= 299.00' S= 0.0100 '/' Cc= 0.900 n= 0.030 Corrugated metal

Primary OutFlow Max=4.60 cfs @ 12.58 hrs HW=301.94' (Free Discharge) -1=Culvert (Barrel Controls 4.60 cfs @ 3.1 fps)

Pond WP: ex pond

Inflow Area =	7.135 ac, Inflow Depth = 1.48"	for Q-10 event
Inflow =	7.28 cfs @ 12.28 hrs, Volume=	0.878 af
Outflow =	4.63 cfs @ 12.55 hrs, Volume=	0.864 af, Atten= 36%, Lag= 16.0 min
Primary =	4.63 cfs @ 12.55 hrs, Volume=	0.864 af

Routing by Stor-Ind method, Time Span= 2.00-30.00 hrs, dt= 0.02 hrs Starting Elev= 309.00' Surf.Area= 12,211 sf Storage= 30,661 cf Peak Elev= 309.91' @ 12.55 hrs Surf.Area= 12,926 sf Storage= 42,044 cf (11,383 cf above start) Plug-Flow detention time= 660.4 min calculated for 0.161 af (18% of inflow) Center-of-Mass det. time= 86.6 min (942.1 - 855.5)

Volume	Inv	ert Avail.	Storage	Storage Description		
#1 306.00' 64,766 cf		4,766 cf	Custom Stage Data (Prismatic)Listed below (Recalc)			
Elevatio		Surf.Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
306.00		5,000		0	0	
307.00		10,633	0,633		7,817	
310.00		13,000	13,000 3		43,266	
311.00		30,000	30,000 2		64,766	
Device Routing Inve		Invert	Outlet D	evices		
#1	Primary	309.00'		et) 0.20		-Crested Rectangular Weir 80 1.00 1.20 1.40 1.60 1.80 2.00

severance existing POI #2	Type II 24-hr Q-10 Rainfall=3.20"
Prepared by Civil Engineering Associates	Page 6
HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC	1/9/2007
Coef. (English) 2.69 2.72 2.75 2.8	5 2.98 3.08 3.20 3.28 3.31 3.30

 #2
 Primary
 309.50'
 3.31 3.32

 3.0' long x 1.0' breadth Broad-Crested Rectangular Weir

 Head (feet)
 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

 2.50 3.00
 Coef. (English)
 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30

 3.31 3.32
 3.31 3.32

Primary OutFlow Max=4.62 cfs @ 12.55 hrs HW=309.91' (Free Discharge)

-1=Broad-Crested Rectangular Weir (Weir Controls 2.51 cfs @ 2.8 fps)

-2=Broad-Crested Rectangular Weir (Weir Controls 2.11 cfs @ 1.7 fps)

severance existing POI #2 Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD S	Type II 24-hr Q-100 Rainfall=5.20"Page 7Software Solutions LLC1/9/2007
Runoff by SCS	00 hrs, dt=0.02 hrs, 1401 points 5 TR-20 method, UH=SCS ethod - Pond routing by Stor-Ind method
Subcatchment X: back of store	Runoff Area=45,426 sf Runoff Depth=3.76" w Length=100' Tc=7.4 min CN=87 Runoff=6.34 cfs 0.326 af
Subcatchment Y: parking lot	Runoff Area=34,113 sf Runoff Depth=4.39" w Length=180' Tc=1.9 min CN=93 Runoff=6.26 cfs 0.287 af
Subcatchment Z: pond and field Flow	Runoff Area=265,370 sf Runoff Depth=3.07" Length=500' Tc=33.0 min CN=80 Runoff=15.25 cfs 1.558 af
Reach r3: pond outlet to CB n=0.050 L=260.0	Peak Depth=1.42' Max Vel=2.1 fps Inflow=12.54 cfs 1.867 af D' S=0.0115 '/' Capacity=2.88 cfs Outflow=12.48 cfs 1.867 af
Pond 1P: ex CB to POI #2	Peak Elev=304.48' Inflow=12.87 cfs 2.154 af 18.0" x 60.0' Culvert Outflow=12.87 cfs 2.154 af
Pond 2P: ex CB	Peak Elev=312.16' Inflow=12.48 cfs 1.867 af 18.0" x 135.0' Culvert Outflow=12.48 cfs 1.867 af
Pond WP: ex pond	eak Elev=310.39' Storage=49,604 cf Inflow=16.10 cfs 1.884 af Outflow=12.54 cfs 1.867 af

Total Runoff Area = 7.918 ac Runoff Volume = 2.171 af Average Runoff Depth = 3.29"

Subcatchment X: back of store

Runoff = 6.34 cfs @ 11.98 hrs, Volume= 0.326 af, Depth= 3.76"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-30.00 hrs, dt= 0.02 hrs Type II 24-hr Q-100 Rainfall=5.20"

	A	rea (sf)	CN [Description		
		6,377	98 F	Paved park	ing & roofs	
		21,750	89 (Gravel road	ls, HSG C	
		7,299	89 (Gravel road	ls, HSG C ((PLANTS)
		10,000	74 >	-75% Gras	s cover, Go	ood, HSG C
		45,426	87 \	Veighted A	verage	
				-	-	
	Тс	Length	Slope	Velocity	Capacity	Description
((min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	0.8	50	0.0200	1.0		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 2.30"
	6.6	50	0.0200	0.1		Sheet Flow,
						Grass: Short n= 0.150 P2= 2.30"
	7.4	100	Total			

Subcatchment Y: parking lot

Runoff = 6.26 cfs @ 11.92 hrs, Volume= 0.287 af, Depth= 4.39"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-30.00 hrs, dt= 0.02 hrs Type II 24-hr Q-100 Rainfall=5.20"

_	A	rea (sf)	CN [Description		
		26,613	98 F	Paved park	ing & roofs	
_		7,500	74 >	>75% Gras	s cover, Go	bod, HSG C
		34,113	93 \	Neighted A	verage	
	т.	1	01		0	Description
	TC	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.5	100	0.0167	1.1		Sheet Flow,
						Smooth surfaces n= 0.011 P2= 2.30"
	0.3	50	0.0200	2.9		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	0.1	30	0.0600	3.7		Shallow Concentrated Flow, flow to cb
_						Grassed Waterway Kv= 15.0 fps
_						

1.9 180 Total

Subcatchment Z: pond and field

Runoff = 15.25 cfs @ 12.28 hrs, Volume= 1.558 af, Depth= 3.07"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-30.00 hrs, dt= 0.02 hrs Type II 24-hr Q-100 Rainfall=5.20"

Area (sf)	CN Description			
14,500	89 Gravel roads, HSG C			
115,000	82 Row crops, SR + CR, Good, HSG C			
67,935 67,935	 79 50-75% Grass cover, Fair, HSG C 76 Woods/grass comb., Fair, HSG C 			
265,370				
200,070	00 Weighted Average			
Tc Lengt	h Slope Velocity Capacity Description			
(min) (fee				
11.7 15				
21.3 35	Cultivated: Residue<=20% n= 0.060 P2= 2.30"0 0.00300.3Shallow Concentrated Flow, flow to pond Woodland Kv= 5.0 fps			
33.0 50				
	Reach r3: pond outlet to CB			
	•			
Inflow Area =	7.135 ac, Inflow Depth > 3.14 " for Q-100 event			
Inflow = Outflow =	12.54 cfs @ 12.46 hrs, Volume= 1.867 af 12.48 cfs @ 12.49 hrs, Volume= 1.867 af, Atten= 0%, Lag= 1.9 min			
Outnow –	12.40 CIS (0) 12.49 HIS, VOIUME = 1.007 al, Alteri- 0.%, Lag- 1.9 Him			
Routing by Stor-Ind method, Time Span= 2.00-30.00 hrs, dt= 0.02 hrs Max. Velocity= 2.1 fps, Min. Travel Time= 2.0 min Avg. Velocity = 0.8 fps, Avg. Travel Time= 5.3 min				
Peak Depth= 1.42' @ 12.49 hrs Capacity at bank full= 2.88 cfs Inlet Invert= 310.00', Outlet Invert= 307.00' 2.50' x 0.50' deep channel, n= 0.050 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 4.50' Length= 260.0' Slope= 0.0115 '/'				
Pond 1P: ex CB to POI #2				
Inflow Area = Inflow = Outflow = Primary =	7.918 ac, Inflow Depth > 3.26"for Q-100 event12.87 cfs @ 12.48 hrs, Volume=2.154 af12.87 cfs @ 12.48 hrs, Volume=2.154 af, Atten= 0%, Lag= 0.0 min12.87 cfs @ 12.48 hrs, Volume=2.154 af			
Peak Elev= 304 Flood Elev= 30 Plug-Flow deter	-Ind method, Time Span= 2.00-30.00 hrs, dt= 0.02 hrs .48' @ 12.48 hrs 7.00' ntion time= (not calculated: outflow precedes inflow) det. time= 0.0 min (881.6 - 881.6)			
Device Routir	g Invert Outlet Devices			
#1 Prima				

Primary OutFlow Max=12.87 cfs @ 12.48 hrs HW=304.48' (Free Discharge) **1=Culvert** (Barrel Controls 12.87 cfs @ 7.3 fps)

Pond 2P: ex CB

Inflow Area	a =	7.135 ac, I	nflow Depth > 3.14"	for Q-100 event	
Inflow	=	12.48 cfs @	12.49 hrs, Volume=	1.867 af	
Outflow	=	12.48 cfs @	12.49 hrs, Volume=	1.867 af, Atten= 0%, Lag= 0.0 min	
Primary	=	12.48 cfs @	12.49 hrs, Volume=	1.867 af	
Douting by Stor Ind method. Time Shann 2.00.20.00 hrs. dt= 0.02 hrs.					

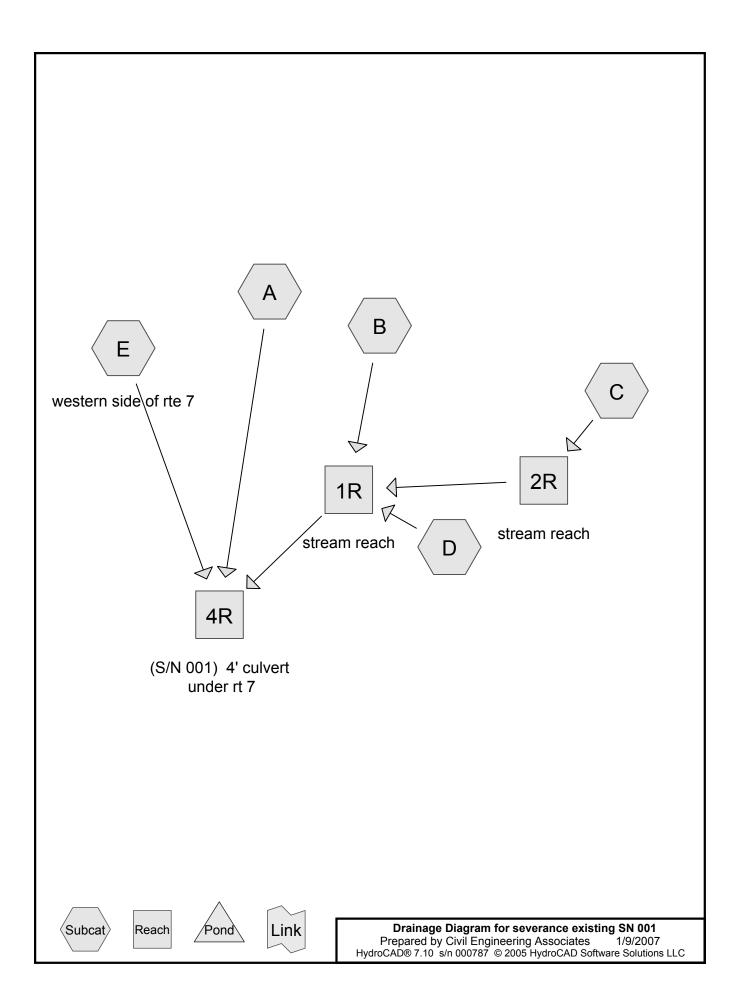
Routing by Stor-Ind method, Time Span= 2.00-30.00 hrs, dt= 0.02 hrs Peak Elev= 312.16' @ 12.49 hrs Plug-Flow detention time= 0.0 min calculated for 1.867 af (100% of inflow) Center-of-Mass det. time= 0.0 min (898.7 - 898.7)

Device	Routing	Invert	Outlet Devices
#1	Primary	300.35'	18.0" x 135.0' long Culvert CMP, projecting, no headwall, Ke= 0.900 Outlet Invert= 299.00' S= 0.0100 '/' Cc= 0.900 n= 0.030 Corrugated metal

Primary OutFlow Max=12.48 cfs @ 12.49 hrs HW=312.15' (Free Discharge) ←1=Culvert (Barrel Controls 12.48 cfs @ 7.1 fps)

Pond WP: ex pond

Inflow Area =	7.135 ac, Inflow Depth = 3.17"	for Q-100 event
Inflow =	16.10 cfs @ 12.27 hrs, Volume=	1.884 af
Outflow =	12.54 cfs @ 12.46 hrs, Volume=	1.867 af, Atten= 22%, Lag= 10.9 min
Primary =	12.54 cfs @ 12.46 hrs, Volume=	1.867 af


Routing by Stor-Ind method, Time Span= 2.00-30.00 hrs, dt= 0.02 hrs Starting Elev= 309.00' Surf.Area= 12,211 sf Storage= 30,661 cf Peak Elev= 310.39' @ 12.46 hrs Surf.Area= 19,608 sf Storage= 49,604 cf (18,943 cf above start) Plug-Flow detention time= 267.3 min calculated for 1.164 af (62% of inflow) Center-of-Mass det. time= 61.5 min (895.9 - 834.4)

Volume	Inv	ert Avail.	Storage	Storage	Description	
#1	306.	00' 64	4,766 cf	Custom	Stage Data (Pi	Prismatic)Listed below (Recalc)
Elevatio		Surf.Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
306.0	00	5,000		0	0	
307.0	00	10,633		7,817	7,817	
310.0	00	13,000	3	5,450	43,266	
311.(00	30,000	2	1,500	64,766	
Device	Routing	Invert	Outlet D	evices		
#1	Primary	309.00'		et) 0.20		-Crested Rectangular Weir 80 1.00 1.20 1.40 1.60 1.80 2.00

severance existing POI #2	Type II 24-hr Q-100 Rainfall=5.20"
Prepared by Civil Engineering Associates	Page 11
HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC	C 1/9/2007
Coof (English) 260 272 275 2	95 2 09 2 09 2 20 2 29 2 21 2 20

			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32
#2	Primary	309.50'	3.0' long x 1.0' breadth Broad-Crested Rectangular Weir
	5		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00
			2.50 3.00
			Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30
			3.31 3.32

Primary OutFlow Max=12.53 cfs @ 12.46 hrs HW=310.39' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 5.22 cfs @ 3.8 fps) 2=Broad-Crested Rectangular Weir (Weir Controls 7.31 cfs @ 2.7 fps)

severance existing SN 001
Prepared by Civil Engineering Associates
HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

Time span=2.00-36.00 hrs, dt=0.03 hrs, 1134 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind method - Pond routing by Stor-Ind method

Subcatchment A:	Runoff Area=660,956 sf Runoff Depth=0.37" Flow Length=1,690' Tc=25.1 min CN=59 Runoff=3.11 cfs 0.473 af
Subcatchment B:	Runoff Area=771,059 sf Runoff Depth=0.41" Flow Length=1,630' Tc=28.6 min CN=60 Runoff=3.87 cfs 0.602 af
Subcatchment C:	Runoff Area=1,862,400 sf Runoff Depth=0.25" Flow Length=990' Tc=12.8 min CN=55 Runoff=5.98 cfs 0.894 af
Subcatchment D:	Runoff Area=239,147 sf Runoff Depth=0.13" Flow Length=385' Tc=12.2 min CN=50 Runoff=0.12 cfs 0.059 af
Subcatchment E: western side of rte	Runoff Area=314,587 sf Runoff Depth=0.44" Flow Length=1,220' Tc=10.0 min CN=61 Runoff=3.63 cfs 0.267 af
Reach 1R: stream reach n=0.045	Peak Depth=0.63' Max Vel=3.5 fps Inflow=7.92 cfs 1.555 af L=330.0' S=0.0300 '/' Capacity=17.80 cfs Outflow=7.90 cfs 1.555 af
Reach 2R: stream reach n=0.045 l	Peak Depth=0.51' Max Vel=3.2 fps Inflow=5.98 cfs 0.894 af =1,750.0' S=0.0340 '/' Capacity=6.48 cfs Outflow=4.09 cfs 0.894 af
Reach 4R: (S/N 001) 4' culvert under D=48.0" n=0.030 L	

Total Runoff Area = 88.341 ac Runoff Volume = 2.295 af Average Runoff Depth = 0.31"

Subcatchment A:

Runoff = 3.11 cfs @ 12.27 hrs, Volume= 0.473 af, Depth= 0.37"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-35.99 hrs, dt= 0.03 hrs Type II 24-hr Q-10 Rainfall=3.20"

_	A	rea (sf)	CN I	Description		
		23,840	98 (ex road		
	1	00,650	48 I	Brush, Goo	d, HSG B	
		41,500	65 I	Brush, Goo	d, HSG C	
		92,554		Noods, Go	,	
_	4	02,412	55 \	Noods, Go	od, HSG B	
	6	60,956	59	Neighted A	verage	
	Тс	Length	Slope	,	Capacity	Description
_	(min)	(feet)	(ft/ft)		(cfs)	
	19.0	150	0.0130	0.1		Sheet Flow,
						Grass: Short n= 0.150 P2= 2.30"
	2.8	340	0.1600	2.0		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	3.3	1,200	0.0820	6.1	16.30	Trap/Vee/Rect Channel Flow,
						Bot.W=2.00' D=0.67' Z= 3.0 '/' Top.W=6.02'
_						n= 0.040 Earth, dense weeds
	25.1	1.690	Total			

25.1 1,690 Total

Subcatchment B:

Runoff = 3.87 cfs @ 12.31 hrs, Volume= 0.602 af, Depth= 0.41"

Area (sf)	CN	Description	
27,257	98	Paved parking & roofs	
29,050	61	>75% Grass cover, Good, HSG B	
563,199	55	Woods, Good, HSG B	
88,550	74	>75% Grass cover, Good, HSG C	
50,000	70	Woods, Good, HSG C	
13,003	87	Dirt roads, HSG C (PLANT AREAS)	
771,059	60	Weighted Average	

severance existing SN 001

Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	21.1	150	0.0100	0.1		Sheet Flow,
		405	0.0400	4 5		Grass: Short n= 0.150 P2= 2.30"
	1.4	125	0.0100	1.5		Shallow Concentrated Flow,
	1.0	155	0.2900	2.7		Grassed Waterway Kv= 15.0 fps Shallow Concentrated Flow,
	1.0	100	0.2300	2.1		Woodland Kv= 5.0 fps
	1.8	400	0.1000	3.7	2.44	
						Bot.W=1.00' D=0.33' Z= 3.0 '/' Top.W=2.98'
						n= 0.045 Winding stream, pools & shoals
	3.3	800	0.0470	4.0	6.05	Trap/Vee/Rect Channel Flow,
						Bot.W=2.00' D=0.50' Z= 2.0 '/' Top.W=4.00'
_						n= 0.040 Winding stream, pools & shoals

28.6 1,630 Total

Subcatchment C:

Runoff = 5.98 cfs @ 12.11 hrs, Volume= 0.894 af, Depth= 0.25"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-35.99 hrs, dt= 0.03 hrs Type II 24-hr Q-10 Rainfall=3.20"

A	rea (sf)	CN	Description					
	27,094	98	ex road					
	40,990	98	ex houses a	and drives				
2	18,675	70	Woods, Go	od, HSG C				
5	518,495	30	Woods, Go	od, HSG A				
	43,081	39	>75% Gras	s cover, Go	bod, HSG A			
2	255,864				Good, HSG C			
7	758,201		Woods, Go					
1.8	362,400	55	Weighted A	verage				
.,•	,		e gine a r					
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	,	(cfs)	[
6.2	100	0.0150			Sheet Flow,			
0			010		Cultivated: Residue<=20% n= 0.060 P2= 2.30"			
2.4	160	0.0150	1.1		Shallow Concentrated Flow,			
					Cultivated Straight Rows Kv= 9.0 fps			
1.2	180	0.2670	2.6		Shallow Concentrated Flow,			
		0.2010			Woodland $Kv = 5.0 \text{ fps}$			
3.0	550	0.0330	3.1	3.08				
0.0		2.2000	0	0.00	Bot.W=1.00' D=0.50' Z= 2.0 '/' Top.W=3.00'			
					n= 0.040 Winding stream, pools & shoals			
12.8	990	Total						

Type II 24-hr Q-10 Rainfall=3.20" Page 4 1/9/2007

Subcatchment D:

Runoff = 0.12 cfs @ 12.46 hrs, Volume= 0.059 af, Depth= 0.13"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-35.99 hrs, dt= 0.03 hrs Type II 24-hr Q-10 Rainfall=3.20"

Ar	rea (sf)	CN [Description		
	7,500	98 e	ex road		
	68,267		Noods, Go		
6	63,380	30 \	Noods, Go	od, HSG A	
23	39,147	50 \	Neighted A	verage	
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
10.7	120	0.2500	0.2		Sheet Flow,
1.5	265	0.3400	2.9		Woods: Light underbrush n= 0.400 P2= 2.30" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
12.2	385	Total			

Subcatchment E: western side of rte 7

Runoff	-	3.63 cfs @	12.05 hrs	Volume=	0.267 af, Depth= 0.44"
Runon	_	3.03 CIS @	12.05 115,	volume-	0.207 al, Deptil - 0.44

A	rea (sf)	CN D	escription				
	23,840	98 e	x pavemer	nt			
2	90,747	58 V	Woods/grass comb., Good, HSG B				
3	14,587	61 V	Veighted A	verage			
			0	Ũ			
Тс	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	-		
5.7	70	0.4000	0.2		Sheet Flow,		
					Woods: Light underbrush n= 0.400 P2= 2.30"		
0.9	175	0.4000	3.2		Shallow Concentrated Flow,		
					Woodland Kv= 5.0 fps		
1.7	800	0.1000	7.6	11.96	Trap/Vee/Rect Channel Flow, roadside ditch		
					Bot.W=1.00' D=0.67' Z= 2.0 '/' Top.W=3.68'		
					n= 0.033 Earth, grassed & winding		
0.7	175	0.0200	4.4	13.86	Circular Channel (pipe), ex culvert under rd		
					Diam= 24.0" Area= 3.1 sf Perim= 6.3' r= 0.50'		
					n= 0.030 Corrugated metal		
1.0					Direct Entry, outlet conditions		
10.0	1,220	Total					

Reach 1R: stream reach

 Inflow Area =
 65.946 ac, Inflow Depth =
 0.28" for Q-10 event

 Inflow =
 7.92 cfs @
 12.28 hrs, Volume=
 1.555 af

 Outflow =
 7.90 cfs @
 12.30 hrs, Volume=
 1.555 af, Atten= 0%, Lag= 1.2 min

Routing by Stor-Ind method, Time Span= 2.00-35.99 hrs, dt= 0.03 hrs Max. Velocity= 3.5 fps, Min. Travel Time= 1.6 min Avg. Velocity = 1.1 fps, Avg. Travel Time= 4.9 min

Peak Depth= 0.63' @ 12.30 hrs Capacity at bank full= 17.80 cfs 3.00' x 1.00' deep channel, n= 0.045 Winding stream, pools & shoals Side Slope Z-value= 1.0 '/' Top Width= 5.00' Length= 330.0' Slope= 0.0300 '/'

Reach 2R: stream reach

 Inflow Area =
 42.755 ac, Inflow Depth =
 0.25" for Q-10 event

 Inflow =
 5.98 cfs @
 12.11 hrs, Volume=
 0.894 af

 Outflow =
 4.09 cfs @
 12.24 hrs, Volume=
 0.894 af, Atten= 32%, Lag= 7.3 min

Routing by Stor-Ind method, Time Span= 2.00-35.99 hrs, dt= 0.03 hrs Max. Velocity= 3.2 fps, Min. Travel Time= 9.2 min Avg. Velocity = 1.1 fps, Avg. Travel Time= 27.2 min

Peak Depth= 0.51' @ 12.24 hrs Capacity at bank full= 6.48 cfs 2.00' x 0.67' deep channel, n= 0.045 Winding stream, pools & shoals Side Slope Z-value= 1.0 '/' Top Width= 3.34' Length= 1,750.0' Slope= 0.0340 '/'

Reach 4R: (S/N 001) 4' culvert under rt 7

 Inflow Area =
 88.341 ac, Inflow Depth =
 0.31" for Q-10 event

 Inflow =
 12.08 cfs @
 12.27 hrs, Volume=
 2.295 af

 Outflow =
 12.07 cfs @
 12.28 hrs, Volume=
 2.295 af, Atten= 0%, Lag= 0.4 min

Routing by Stor-Ind method, Time Span= 2.00-35.99 hrs, dt= 0.03 hrs Max. Velocity= 5.1 fps, Min. Travel Time= 0.6 min Avg. Velocity = 1.9 fps, Avg. Travel Time= 1.6 min

Peak Depth= 0.97' @ 12.28 hrs Capacity at bank full= 94.11 cfs Inlet Invert= 160.00', Outlet Invert= 156.00' 48.0" Diameter Pipe, n= 0.030 Corrugated metal Length= 175.0' Slope= 0.0229 '/'

severance existing SN 001	Тур
Prepared by Civil Engineering Associates	
HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC)

Time span=2.00-36.00 hrs, dt=0.03 hrs, 1134 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind method - Pond routing by Stor-Ind method

Subcatchment A:	Runoff Area=660,956 sf Runoff Depth=1.35" Flow Length=1,690' Tc=25.1 min CN=59 Runoff=17.57 cfs 1.706 af
Subcatchment B:	Runoff Area=771,059 sf Runoff Depth=1.42" Flow Length=1,630' Tc=28.6 min CN=60 Runoff=19.97 cfs 2.094 af
Subcatchment C:	Runoff Area=1,862,400 sf Runoff Depth=1.08" Flow Length=990' Tc=12.8 min CN=55 Runoff=55.77 cfs 3.852 af
Subcatchment D:	Runoff Area=239,147 sf Runoff Depth=0.78" Flow Length=385' Tc=12.2 min CN=50 Runoff=4.52 cfs 0.355 af
Subcatchment E: western side of r	te 7 Runoff Area=314,587 sf Runoff Depth=1.49" Flow Length=1,220' Tc=10.0 min CN=61 Runoff=15.88 cfs 0.897 af
Reach 1R: stream reach n=0.045	Peak Depth=2.48' Max Vel=5.6 fps Inflow=64.11 cfs 6.301 af L=330.0' S=0.0300 '/' Capacity=17.80 cfs Outflow=63.89 cfs 6.301 af
Reach 2R: stream reach n=0.045	Peak Depth=2.88' Max Vel=4.8 fps Inflow=55.77 cfs 3.852 af L=1,750.0' S=0.0340 '/' Capacity=6.48 cfs Outflow=43.97 cfs 3.852 af
Reach 4R: (S/N 001) 4' culvert und D=48.0" n=0.030	

Total Runoff Area = 88.341 ac Runoff Volume = 8.904 af Average Runoff Depth = 1.21"

Subcatchment A:

Runoff 17.57 cfs @ 12.21 hrs, Volume= 1.706 af, Depth= 1.35" =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-35.99 hrs, dt= 0.03 hrs Type II 24-hr Q-100 Rainfall=5.20"

_	A	rea (sf)	CN	Description		
		23,840	98	ex road		
	1	00,650	48	Brush, Goo	d, HSG B	
		41,500	65	Brush, Goo	d, HSG C	
		92,554	77	Woods, Go	od, HSG D	
_	4	02,412	55	Woods, Go	od, HSG B	
	6	60,956	59	Weighted A	verage	
	Тс	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	19.0	150	0.0130	0.1		Sheet Flow,
						Grass: Short n= 0.150 P2= 2.30"
	2.8	340	0.1600	2.0		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	3.3	1,200	0.0820	6.1	16.30	Trap/Vee/Rect Channel Flow,
						Bot.W=2.00' D=0.67' Z= 3.0 '/' Top.W=6.02'
_						n= 0.040 Earth, dense weeds
	25.1	1.690	Total			

25.1 1,690 Iotai

Subcatchment B:

Runoff 19.97 cfs @ 12.25 hrs, Volume= 2.094 af, Depth= 1.42" =

Area (sf)	CN	Description
27,257	98	Paved parking & roofs
29,050	61	>75% Grass cover, Good, HSG B
563,199	55	Woods, Good, HSG B
88,550	74	>75% Grass cover, Good, HSG C
50,000	70	Woods, Good, HSG C
13,003	87	Dirt roads, HSG C (PLANT AREAS)
771,059	60	Weighted Average

severance existing SN 001

Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
21.1	150	0.0100	0.1		Sheet Flow,
					Grass: Short n= 0.150 P2= 2.30"
1.4	125	0.0100	1.5		Shallow Concentrated Flow,
					Grassed Waterway Kv= 15.0 fps
1.0	155	0.2900	2.7		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
1.8	400	0.1000	3.7	2.44	Trap/Vee/Rect Channel Flow,
					Bot.W=1.00' D=0.33' Z= 3.0 '/' Top.W=2.98'
					n= 0.045 Winding stream, pools & shoals
3.3	800	0.0470	4.0	6.05	Trap/Vee/Rect Channel Flow,
					Bot.W=2.00' D=0.50' Z= 2.0 '/' Top.W=4.00'
					n= 0.040 Winding stream, pools & shoals

28.6 1,630 Total

Subcatchment C:

Runoff = 55.77 cfs @ 12.07 hrs, Volume= 3.852 af, Depth= 1.08"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-35.99 hrs, dt= 0.03 hrs Type II 24-hr Q-100 Rainfall=5.20"

A	rea (sf)	CN [Description					
	27,094	98 e	ex road					
	40,990	98 e	ex houses a	and drives				
2	18,675	70 \	Voods, Go	od, HSG C				
5	518,495	30 \	Voods, Go	od, HSG A				
	43,081	39 >	-75% Gras	s cover, Go	ood, HSG A			
2	255,864	82 F	Row crops,	SR + CR,	Good, HSG C			
7	758,201	55 \	Voods, Go	od, HSG B				
1.8	362,400	55 \	Veighted A	verage				
- , -	,							
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•			
6.2	100	0.0150	0.3	· · · ·	Sheet Flow,			
•			0.0		Cultivated: Residue<=20% n= 0.060 P2= 2.30"			
2.4	160	0.0150	1.1		Shallow Concentrated Flow,			
					Cultivated Straight Rows Kv= 9.0 fps			
1.2	180	0.2670	2.6		Shallow Concentrated Flow,			
					Woodland $Kv = 5.0 \text{ fps}$			
3.0	550	0.0330	3.1	3.08				
					Bot.W=1.00' D=0.50' Z= 2.0 '/' Top.W=3.00'			
					n= 0.040 Winding stream, pools & shoals			
12.8	990	Total						

Type II 24-hr Q-100 Rainfall=5.20" Page 9 1/9/2007

Subcatchment D:

Runoff = 4.52 cfs @ 12.07 hrs, Volume= 0.355 af, Depth= 0.78"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-35.99 hrs, dt= 0.03 hrs Type II 24-hr Q-100 Rainfall=5.20"

_	A	rea (sf)	CN	Description		
		7,500	98	ex road		
		68,267		Woods, Go	,	
_		63,380	30	Woods, Go	od, HSG A	
	2	39,147	50	Weighted A	verage	
_	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
	10.7	120	0.2500	0.2		Sheet Flow,
	1.5	265	0.3400	2.9		Woods: Light underbrush n= 0.400 P2= 2.30" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	12.2	385	Total			

Subcatchment E: western side of rte 7

Runoff	=	15.88 cfs @	12.03 hrs.	Volume=	0.897 af, Depth= 1.49"
i tunioni		10.00 010 00	12.001110,	volunio	

A	rea (sf)	CN E	escription						
	23,840	98 e	98 ex pavement						
2	90,747	58 V	Voods/gras	s comb., G	Good, HSG B				
3	14,587	61 V	Veighted A	verage					
	-		Ū	U U					
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
5.7	70	0.4000	0.2		Sheet Flow,				
					Woods: Light underbrush n= 0.400 P2= 2.30"				
0.9	175	0.4000	3.2		Shallow Concentrated Flow,				
					Woodland Kv= 5.0 fps				
1.7	800	0.1000	7.6	11.96					
					Bot.W=1.00' D=0.67' Z= 2.0 '/' Top.W=3.68'				
					n= 0.033 Earth, grassed & winding				
0.7	175	0.0200	4.4	13.86	Circular Channel (pipe), ex culvert under rd				
					Diam= 24.0" Area= 3.1 sf Perim= 6.3' r= 0.50'				
					n= 0.030 Corrugated metal				
1.0					Direct Entry, outlet conditions				
10.0	1,220	Total							

Reach 1R: stream reach

 Inflow Area =
 65.946 ac, Inflow Depth =
 1.15" for Q-100 event

 Inflow =
 64.11 cfs @
 12.16 hrs, Volume=
 6.301 af

 Outflow =
 63.89 cfs @
 12.17 hrs, Volume=
 6.301 af, Atten= 0%, Lag= 1.0 min

Routing by Stor-Ind method, Time Span= 2.00-35.99 hrs, dt= 0.03 hrs Max. Velocity= 5.6 fps, Min. Travel Time= 1.0 min Avg. Velocity = 1.6 fps, Avg. Travel Time= 3.4 min

Peak Depth= 2.48' @ 12.17 hrs Capacity at bank full= 17.80 cfs 3.00' x 1.00' deep channel, n= 0.045 Winding stream, pools & shoals Side Slope Z-value= 1.0 '/' Top Width= 5.00' Length= 330.0' Slope= 0.0300 '/'

Reach 2R: stream reach

 Inflow Area =
 42.755 ac, Inflow Depth =
 1.08" for Q-100 event

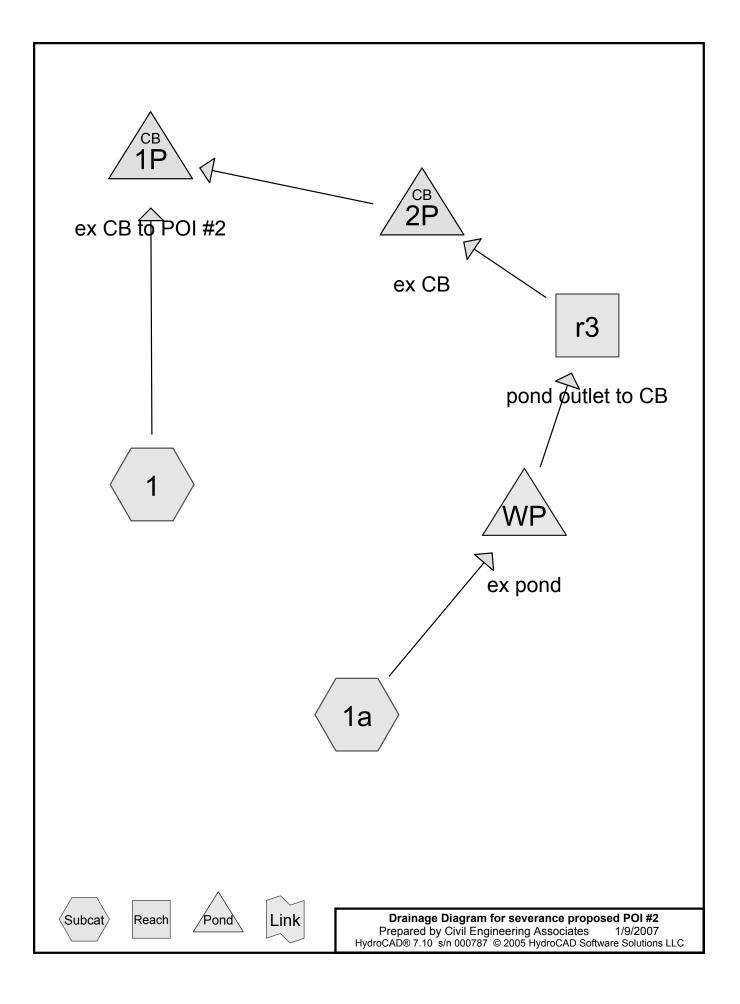
 Inflow =
 55.77 cfs @
 12.07 hrs, Volume=
 3.852 af

 Outflow =
 43.97 cfs @
 12.14 hrs, Volume=
 3.852 af, Atten=

Routing by Stor-Ind method, Time Span= 2.00-35.99 hrs, dt= 0.03 hrs Max. Velocity= 4.8 fps, Min. Travel Time= 6.1 min Avg. Velocity = 1.5 fps, Avg. Travel Time= 19.0 min

Peak Depth= 2.88' @ 12.14 hrs Capacity at bank full= 6.48 cfs 2.00' x 0.67' deep channel, n= 0.045 Winding stream, pools & shoals Side Slope Z-value= 1.0 '/' Top Width= 3.34' Length= 1,750.0' Slope= 0.0340 '/'

Reach 4R: (S/N 001) 4' culvert under rt 7


 Inflow Area =
 88.341 ac, Inflow Depth =
 1.21" for Q-100 event

 Inflow =
 87.38 cfs @
 12.16 hrs, Volume=
 8.904 af

 Outflow =
 87.36 cfs @
 12.17 hrs, Volume=
 8.904 af, Atten= 0%, Lag= 0.3 min

Routing by Stor-Ind method, Time Span= 2.00-35.99 hrs, dt= 0.03 hrs Max. Velocity= 8.5 fps, Min. Travel Time= 0.3 min Avg. Velocity = 2.5 fps, Avg. Travel Time= 1.2 min

Peak Depth= 3.05' @ 12.17 hrs Capacity at bank full= 94.11 cfs Inlet Invert= 160.00', Outlet Invert= 156.00' 48.0" Diameter Pipe, n= 0.030 Corrugated metal Length= 175.0' Slope= 0.0229 '/'

severance proposed POI #2 Prepared by Civil Engineering Associa HydroCAD® 7.10 s/n 000787 © 2005 Hydro								
Time span=2.00-36.00 hrs, dt=0.02 hrs, 1701 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method . Pond routing by Stor-Ind method								
Subcatchment 1:	Runoff Area=1.363 ac Runoff Depth=0.54" Flow Length=90' Tc=18.6 min CN=78 Runoff=0.77 cfs 0.062 af							
Subcatchment 1a:	Runoff Area=74,210 sf Runoff Depth=0.37" Flow Length=100' Tc=14.3 min CN=73 Runoff=0.66 cfs 0.052 af							
Reach r3: pond outlet to CB n=0.025	Peak Depth=0.03' Max Vel=0.7 fps Inflow=0.06 cfs 0.050 af L=260.0' S=0.0115 '/' Capacity=5.75 cfs Outflow=0.06 cfs 0.050 af							
Pond 1P: ex CB to POI #2	Peak Elev=299.44' Inflow=0.77 cfs 0.112 af 18.0" x 60.0' Culvert Outflow=0.77 cfs 0.112 af							
Pond 2P: ex CB	Peak Elev=300.51' Inflow=0.06 cfs 0.050 af 18.0" x 135.0' Culvert Outflow=0.06 cfs 0.050 af							
Pond WP: ex pond	Peak Elev=309.07' Storage=31,563 cf Inflow=0.66 cfs 0.052 af Outflow=0.06 cfs 0.050 af							

Total Runoff Area = 3.067 ac Runoff Volume = 0.113 af Average Runoff Depth = 0.44"

Subcatchment 1:

Runoff = 0.77 cfs @ 12.13 hrs, Volume= 0.062 af, Depth= 0.54"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-36.00 hrs, dt= 0.02 hrs Type II 24-hr Q-1 Rainfall=2.10"

Area	(ac) C	N Des	cription		
0.	110 9	98 bldg	roof		
0.	046 9	98 wetla	and path		
0.	088 9	98 side	walks & bil	kepath	
0.	120 9	98 ex s	everance r	d	
0.	388 6	65 Brus	h, Good, H	ISG C	
0.	115 7		· ·	grazed, HS	
0.	<u>496 7</u>	<u>74 >759</u>	<u>% Grass co</u>	over, Good	, HSG C
1.	363 7	78 Weig	ghted Aver	age	
Тс	Longth	Slope	Velocity	Capacity	Description
(min)	Length (feet)	(ft/ft)	(ft/sec)	Capacity (cfs)	Description
1.0	15	0.2000	0.2		Sheet Flow,
					Grass: Short n= 0.150 P2= 2.30"
17.6	75	0.0100	0.1		Sheet Flow,
					Grass: Dense n= 0.240 P2= 2.30"
18.6	90	Total			

Subcatchment 1a:

Runoff = 0.66 cfs @ 12.09 hrs, Volume= 0.052 af, Depth= 0.37"

A	rea (sf)	CN	Description					
	1,495	98	new sidewa	lk and rec	path			
	2,500	98	bldg roof					
	4,760	98	wetland pat	h				
	29,600	65	Brush, Goo	d, HSG C				
	27,100	71	Meadow, no					
	8,755	79	50-75% Gra	ass cover, l	Fair, HSG C			
	74,210	73	Weighted A	verage				
Тс	Length	Slope		Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)				
14.3	100	0.0300) 0.1		Sheet Flow, Grass: Dense	n= 0.240	P2= 2.30"	

Reach r3: pond outlet to CB

 Inflow Area =
 1.704 ac, Inflow Depth > 0.36"
 for Q-1 event

 Inflow =
 0.06 cfs @
 13.96 hrs, Volume=
 0.050 af

 Outflow =
 0.06 cfs @
 14.15 hrs, Volume=
 0.050 af, Atten= 0%, Lag= 10.9 min

Routing by Stor-Ind+Trans method, Time Span= 2.00-36.00 hrs, dt= 0.02 hrs Max. Velocity= 0.7 fps, Min. Travel Time= 6.6 min Avg. Velocity = 0.4 fps, Avg. Travel Time= 9.7 min

Peak Depth= 0.03' @ 14.04 hrs Capacity at bank full= 5.75 cfs Inlet Invert= 310.00', Outlet Invert= 307.00' 2.50' x 0.50' deep channel, n= 0.025 Earth, clean & straight Side Slope Z-value= 2.0 '/' Top Width= 4.50' Length= 260.0' Slope= 0.0115 '/'

Pond 1P: ex CB to POI #2

Inflow Area =	3.067 ac, Inflow Depth > 0.44"	for Q-1 event
Inflow =	0.77 cfs @ 12.13 hrs, Volume=	0.112 af
Outflow =	0.77 cfs @ 12.13 hrs, Volume=	0.112 af, Atten= 0%, Lag= 0.0 min
Primary =	0.77 cfs @ 12.13 hrs, Volume=	0.112 af

Routing by Stor-Ind method, Time Span= 2.00-36.00 hrs, dt= 0.02 hrs Peak Elev= 299.44' @ 12.13 hrs Flood Elev= 307.00' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (1,021.3 - 1,021.3)

 Device
 Routing
 Invert
 Outlet Devices

 #1
 Primary
 299.00'
 18.0" x 60.0' long Culvert CMP, projecting, no headwall, Ke= 0.900 Outlet Invert= 296.60'
 S= 0.0400 '/' Cc= 0.900 n= 0.030 Corrugated metal

Primary OutFlow Max=0.76 cfs @ 12.13 hrs HW=299.44' (Free Discharge) —1=Culvert (Inlet Controls 0.76 cfs @ 1.8 fps)

Pond 2P: ex CB

Inflow Area Inflow Outflow Primary	a = = = =	1.704 ac, li 0.06 cfs @ 0.06 cfs @ 0.06 cfs @	14.15 hrs, 14.15 hrs,	Volume= Volume=	for Q-	0.050 af	Atten= 0%,	Lag= 0.0 min
Routing by Stor-Ind method, Time Span= 2.00-36.00 hrs, dt= 0.02 hrs Peak Elev= 300.51' @ 14.15 hrs								
Plug-Flow detention time= (not calculated: outflow precedes inflow)								

Center-of-Mass det. time= 0.0 min (1,188.4 - 1,188.4)

severance proposed POI #2

Device Routing

Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

#1	Primary	300.35'	18.0" x 135.0' long Culvert CMP, projecting, no headwall, Ke= 0.900 Outlet Invert= 299.00' S= 0.0100 '/' Cc= 0.900 n= 0.030 Corrugated metal						
	Primary OutFlow Max=0.06 cfs @ 14.15 hrs HW=300.51' (Free Discharge) ←1=Culvert (Barrel Controls 0.06 cfs @ 0.9 fps)								
			Pond W	VP: ex pond					
Inflow A Inflow Outflow Primary	= =	0.66 cfs @ 0.06 cfs @	Inflow Depth = 0.3 12.09 hrs, Volume 13.96 hrs, Volume 13.96 hrs, Volume	e= 0.052 af e= 0.050 af, Atten= 91%, Lag= 112.4 min					
Starting Peak El Plug-Flo	Routing by Stor-Ind method, Time Span= 2.00-36.00 hrs, dt= 0.02 hrs Starting Elev= 309.00' Surf.Area= 12,211 sf Storage= 30,661 cf Peak Elev= 309.07' @ 13.96 hrs Surf.Area= 12,269 sf Storage= 31,563 cf (903 cf above start) Plug-Flow detention time= (not calculated: initial storage excedes outflow) Center-of-Mass det. time= 270.1 min (1,175.6 - 905.5)								
Volume			Storage Storage D						
#1	306.0	0' 6 ₄	4,766 cf Custom \$	Stage Data (Prismatic)Listed below (Recalc)					
Elevatio	on	Surf.Area	Inc.Store	Cum.Store					
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)					
306.0 307.0		5,000 10,633	0 7,817	0					
310.0		13,000	35,450	7,817 43,266					
311.0		30,000	21,500	64,766					
Device	Routing	Invert	Outlet Devices						
#1 #2	Primary	309.00' 309.50'	1.0' long x 1.0' b Head (feet) 0.20 2.50 3.00 Coef. (English) 2.0 3.31 3.32 3.0' long x 1.0' b Head (feet) 0.20 2.50 3.00	readth Broad-Crested Rectangular Weir 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 .69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 readth Broad-Crested Rectangular Weir 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 .69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30					

Primary OutFlow Max=0.05 cfs @ 13.96 hrs HW=309.07' (Free Discharge)

-1=Broad-Crested Rectangular Weir (Weir Controls 0.05 cfs @ 0.7 fps) -2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Invert Outlet Devices

severance proposed POI #2 Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCA						
Time span=2.00-36.00 hrs, dt=0.02 hrs, 1701 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method						
Subcatchment 1:	Runoff Area=1.363 ac Runoff Depth=1.27" Flow Length=90' Tc=18.6 min CN=78 Runoff=1.97 cfs 0.145 af					
Subcatchment 1a:	Runoff Area=74,210 sf Runoff Depth=0.98" Now Length=100' Tc=14.3 min CN=73 Runoff=2.12 cfs 0.140 af					
Reach r3: pond outlet to CB n=0.025 L=2	Peak Depth=0.08' Max Vel=1.1 fps Inflow=0.25 cfs 0.137 af 260.0' S=0.0115 '/' Capacity=5.75 cfs Outflow=0.25 cfs 0.137 af					
Pond 1P: ex CB to POI #2	Peak Elev=299.74' Inflow=2.00 cfs 0.282 af 18.0" x 60.0' Culvert Outflow=2.00 cfs 0.282 af					
Pond 2P: ex CB	Peak Elev=300.67' Inflow=0.25 cfs 0.137 af 18.0" x 135.0' Culvert Outflow=0.25 cfs 0.137 af					
Pond WP: ex pond	Peak Elev=309.20' Storage=33,169 cf Inflow=2.12 cfs 0.140 af Outflow=0.25 cfs 0.137 af					

Total Runoff Area = 3.067 ac Runoff Volume = 0.284 af Average Runoff Depth = 1.11"

Subcatchment 1:

Runoff = 1.97 cfs @ 12.12 hrs, Volume= 0.145 af, Depth= 1.27"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-36.00 hrs, dt= 0.02 hrs Type II 24-hr Q-10 Rainfall=3.20"

Area	(ac) (N Des	cription		
0.	110	98 bldg	roof		
0.	046	98 wetl	and path		
0.	088	98 side	walks & bil	kepath	
0.	120	98 ex s	everance r	d	
-			sh, Good, F		
				grazed, HS	
0.	496	74 >75	<u>% Grass co</u>	over, Good	, HSG C
1.	363	78 Wei	ghted Aver	age	
_				-	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.0	15	0.2000	0.2		Sheet Flow,
					Grass: Short n= 0.150 P2= 2.30"
17.6	75	0.0100	0.1		Sheet Flow,
					Grass: Dense n= 0.240 P2= 2.30"
18.6	90	Total			

Subcatchment 1a:

Runoff = 2.12 cfs @ 12.07 hrs, Volume= 0.140 af, Depth= 0.98"

A	rea (sf)	CN	Description					
	1,495	98	new sidewa	lk and rec	path			
	2,500	98	bldg roof					
	4,760	98	wetland pat	h				
	29,600	65	Brush, Good, HSG C					
	27,100	71	Meadow, no					
	8,755	79	50-75% Gra	ass cover, l	Fair, HSG C			
	74,210	73	Weighted A	verage				
Тс	Length	Slope		Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)				
14.3	100	0.0300) 0.1		Sheet Flow, Grass: Dense	n= 0.240	P2= 2.30"	

Reach r3: pond outlet to CB

 Inflow Area =
 1.704 ac, Inflow Depth > 0.97"
 for Q-10 event

 Inflow =
 0.25 cfs @
 12.78 hrs, Volume=
 0.137 af

 Outflow =
 0.25 cfs @
 12.89 hrs, Volume=
 0.137 af, Atten= 0%, Lag= 6.5 min

Routing by Stor-Ind+Trans method, Time Span= 2.00-36.00 hrs, dt= 0.02 hrs Max. Velocity= 1.1 fps, Min. Travel Time= 3.8 min Avg. Velocity = 0.6 fps, Avg. Travel Time= 7.1 min

Peak Depth= 0.08' @ 12.83 hrs Capacity at bank full= 5.75 cfs Inlet Invert= 310.00', Outlet Invert= 307.00' 2.50' x 0.50' deep channel, n= 0.025 Earth, clean & straight Side Slope Z-value= 2.0 '/' Top Width= 4.50' Length= 260.0' Slope= 0.0115 '/'

Pond 1P: ex CB to POI #2

Inflow Area =	3.067 ac, Inflow Depth > 1.10"	for Q-10 event
Inflow =	2.00 cfs @ 12.12 hrs, Volume=	0.282 af
Outflow =	2.00 cfs @ 12.12 hrs, Volume=	0.282 af, Atten= 0%, Lag= 0.0 min
Primary =	2.00 cfs @ 12.12 hrs, Volume=	0.282 af

Routing by Stor-Ind method, Time Span= 2.00-36.00 hrs, dt= 0.02 hrs Peak Elev= 299.74' @ 12.12 hrs Flood Elev= 307.00' Plug-Flow detention time= 0.0 min calculated for 0.282 af (100% of inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Device	Routing	Invert	Outlet Devices
#1	Primary	299.00'	18.0" x 60.0' long Culvert CMP, projecting, no headwall, Ke= 0.900 Outlet Invert= 296.60' S= 0.0400 '/' Cc= 0.900 n= 0.030 Corrugated metal

Primary OutFlow Max=2.00 cfs @ 12.12 hrs HW=299.74' (Free Discharge) —1=Culvert (Inlet Controls 2.00 cfs @ 2.3 fps)

Pond 2P: ex CB

Inflow Are Inflow Outflow Primary	a = = = =	0.25 cfs @ 0.25 cfs @	nflow Depth > 0.97 12.89 hrs, Volume 12.89 hrs, Volume 12.89 hrs, Volume	e= 0.137 af e= 0.137 af,	Atten= 0%, Lag= 0.0 min		
Routing by Stor-Ind method, Time Span= 2.00-36.00 hrs, dt= 0.02 hrs							

Peak Elev= 300.67' @ 12.89 hrs

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

severance proposed POI #2

Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices					
#1	Primary	300.35'	18.0" x 135.0' long Culvert CMP, projecting, no headwall, Ke= 0.900 Outlet Invert= 299.00' S= 0.0100 '/' Cc= 0.900 n= 0.030 Corrugated metal					
	Primary OutFlow Max=0.25 cfs @ 12.89 hrs HW=300.67' (Free Discharge) 1=Culvert (Barrel Controls 0.25 cfs @ 1.4 fps)							
Pond WP: ex pond								
Inflow A Inflow	=	2.12 cfs @	Inflow Depth = 0.98" for Q-10 event 12.07 hrs, Volume= 0.140 af					

Outflow 0.25 cfs @ 12.78 hrs, Volume= 0.137 af, Atten= 88%, Lag= 42.5 min = Primary = 0.25 cfs @ 12.78 hrs, Volume= 0.137 af

Routing by Stor-Ind method, Time Span= 2.00-36.00 hrs, dt= 0.02 hrs Starting Elev= 309.00' Surf.Area= 12,211 sf Storage= 30,661 cf Peak Elev= 309.20' @ 12.78 hrs Surf.Area= 12,372 sf Storage= 33,169 cf (2,508 cf above start) Plug-Flow detention time= (not calculated: initial storage excedes outflow) Center-of-Mass det. time= 200.4 min (1,070.2 - 869.8)

Volume	Inv	ert Avail.	Storage	Storage	Description	
#1	306.	00' 64	1,766 cf	Custom	i Stage Data (Pi	rismatic)Listed below (Recalc)
Elevatio (fee 306.0 307.0 310.0 311.0	et) 00 00 00	Surf.Area (sq-ft) 5,000 10,633 13,000 30,000	<u>(cubi</u>	c.Store <u>c-feet)</u> 7,817 35,450 21,500	Cum.Store (cubic-feet) 0 7,817 43,266 64,766	
Device	Routing	Invert	Outlet [Devices		
#1	Primary	309.00'	Head (f 2.50 3.	eet) 0.20 00 English) 2	0.40 0.60 0.8	Crested Rectangular Weir01.001.201.401.601.802.002.852.983.083.203.283.313.30
#2	Primary	309.50'	3.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30 3.31 3.32			
D		May-0 05 of	- @ 10 -	70 hrs 111		o Diacharga)

Primary OutFlow Max=0.25 cfs @ 12.78 hrs HW=309.20' (Free Discharge)

-1=Broad-Crested Rectangular Weir (Weir Controls 0.25 cfs @ 1.2 fps)

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

severance proposed POI #2 Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD S	Type II 24-hr Q-100 Rainfall=5.20"Page 10Software Solutions LLC1/9/2007					
Time span=2.00-36.00 hrs, dt=0.02 hrs, 1701 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method , Pond routing by Stor-Ind method						
Subcatchment 1:	Runoff Area=1.363 ac Runoff Depth=2.88" w Length=90' Tc=18.6 min CN=78 Runoff=4.55 cfs 0.327 af					
Subcatchment 1a: Flow	Runoff Area=74,210 sf Runoff Depth=2.44" / Length=100' Tc=14.3 min CN=73 Runoff=5.50 cfs 0.346 af					
Reach r3: pond outlet to CB n=0.025 L=260	Peak Depth=0.19' Max Vel=1.9 fps Inflow=1.04 cfs 0.343 af .0' S=0.0115 '/' Capacity=5.75 cfs Outflow=1.04 cfs 0.343 af					
Pond 1P: ex CB to POI #2	Peak Elev=300.29' Inflow=4.95 cfs 0.670 af 18.0" x 60.0' Culvert Outflow=4.95 cfs 0.670 af					
Pond 2P: ex CB	Peak Elev=301.00' Inflow=1.04 cfs 0.343 af 18.0" x 135.0' Culvert Outflow=1.04 cfs 0.343 af					
Pond WP: ex pond	Peak Elev=309.52' Storage=37,057 cf Inflow=5.50 cfs 0.346 af Outflow=1.04 cfs 0.343 af					

Total Runoff Area = 3.067 ac Runoff Volume = 0.674 af Average Runoff Depth = 2.64"

Subcatchment 1:

Runoff = 4.55 cfs @ 12.11 hrs, Volume= 0.327 af, Depth= 2.88"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-36.00 hrs, dt= 0.02 hrs Type II 24-hr Q-100 Rainfall=5.20"

Area	(ac) C	N Des	cription					
0.	110	98 bldg	roof					
0.	046	98 wetl	etland path					
0.	.088	98 side	walks & bil	kepath				
		98 exs	everance r	d				
-			sh, Good, H					
				grazed, HS				
0.	496	74 >75°	<u>% Grass co</u>	over, Good	, HSG C			
1.	.363	78 Wei	ghted Aver	age				
_				.	-			
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
1.0	15	0.2000	0.2		Sheet Flow,			
					Grass: Short n= 0.150 P2= 2.30"			
17.6	75	0.0100	0.1		Sheet Flow,			
					Grass: Dense n= 0.240 P2= 2.30"			
18.6	90	Total						

Subcatchment 1a:

Runoff = 5.50 cfs @ 12.07 hrs, Volume= 0.346 af, Depth= 2.44"

A	rea (sf)	CN	Description					
	1,495	98	new sidewa	lk and rec	path			
	2,500	98	bldg roof					
	4,760	98	wetland pat	h				
	29,600	65	Brush, Good, HSG C					
	27,100	71	Meadow, no					
	8,755	79	50-75% Gra	ass cover, l	Fair, HSG C			
	74,210	73	Weighted A	verage				
Тс	Length	Slope		Capacity	Description			
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)				
14.3	100	0.0300) 0.1		Sheet Flow, Grass: Dense	n= 0.240	P2= 2.30"	

Reach r3: pond outlet to CB

 Inflow Area =
 1.704 ac, Inflow Depth > 2.42" for Q-100 event

 Inflow =
 1.04 cfs @ 12.46 hrs, Volume=
 0.343 af

 Outflow =
 1.04 cfs @ 12.52 hrs, Volume=
 0.343 af, Atten= 0%, Lag= 3.9 min

Routing by Stor-Ind+Trans method, Time Span= 2.00-36.00 hrs, dt= 0.02 hrs Max. Velocity= 1.9 fps, Min. Travel Time= 2.3 min Avg. Velocity = 0.8 fps, Avg. Travel Time= 5.7 min

Peak Depth= 0.19' @ 12.49 hrs Capacity at bank full= 5.75 cfs Inlet Invert= 310.00', Outlet Invert= 307.00' 2.50' x 0.50' deep channel, n= 0.025 Earth, clean & straight Side Slope Z-value= 2.0 '/' Top Width= 4.50' Length= 260.0' Slope= 0.0115 '/'

Pond 1P: ex CB to POI #2

Inflow Area =	3.067 ac, Inflow Depth > 2.62"	for Q-100 event
Inflow =	4.95 cfs @ 12.13 hrs, Volume=	0.670 af
Outflow =	4.95 cfs @ 12.13 hrs, Volume=	0.670 af, Atten= 0%, Lag= 0.0 min
Primary =	4.95 cfs @ 12.13 hrs, Volume=	0.670 af

Routing by Stor-Ind method, Time Span= 2.00-36.00 hrs, dt= 0.02 hrs Peak Elev= 300.29' @ 12.13 hrs Flood Elev= 307.00' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (916.3 - 916.3)

 Device
 Routing
 Invert
 Outlet Devices

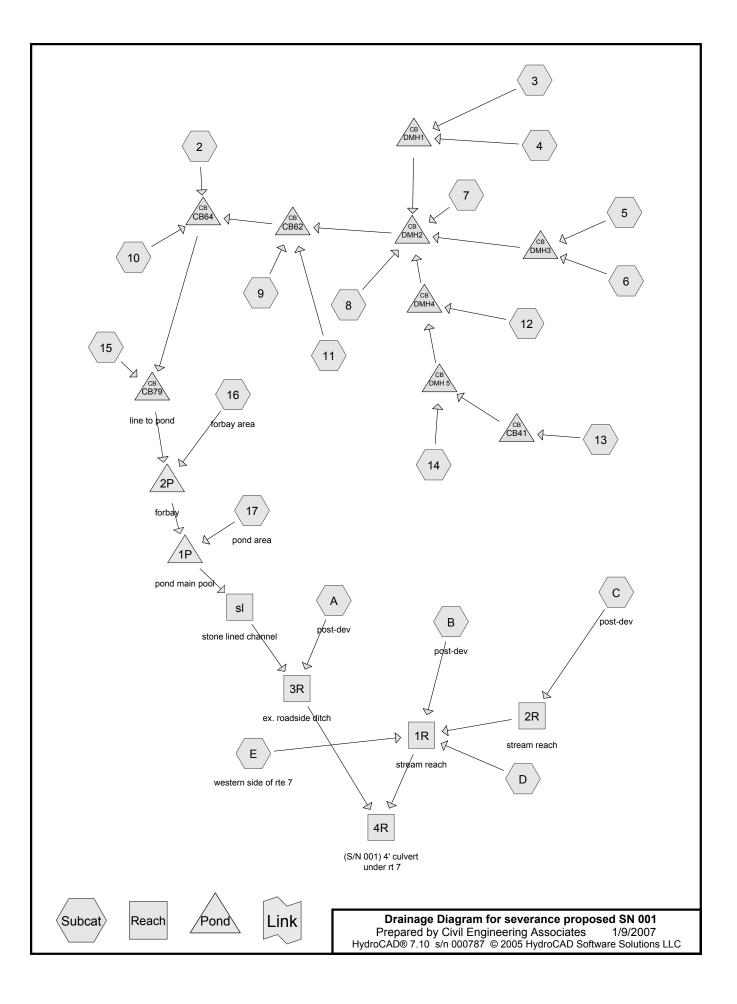
 #1
 Primary
 299.00'
 18.0" x 60.0' long Culvert CMP, projecting, no headwall, Ke= 0.900 Outlet Invert= 296.60'
 S= 0.0400 '/' Cc= 0.900 n= 0.030 Corrugated metal

Primary OutFlow Max=4.95 cfs @ 12.13 hrs HW=300.29' (Free Discharge) —1=Culvert (Inlet Controls 4.95 cfs @ 3.1 fps)

Pond 2P: ex CB

Inflow Are Inflow Outflow Primary	a = = = =	1.704 ac, 1 1.04 cfs @ 1.04 cfs @ 1.04 cfs @	12.52 hrs, 12.52 hrs,	Volume= Volume=	for Q-100 ev 0.343 a 0.343 a 0.343 a	af af, Atten= 0%,	Lag= 0.0 min		
Routing by Stor-Ind method, Time Span= 2.00-36.00 hrs, dt= 0.02 hrs Peak Elev= 301.00' @ 12.52 hrs									

Plug-Flow detention time= 0.0 min calculated for 0.343 af (100% of inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)


severance proposed POI #2 Prepared by Civil Engineering Associates

Type II 24-hr Q-100 Rainfall=5.20" Page 13 HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC 1/9/2007

DeviceRoutingInvert#1Primary300.35'	Outlet Devices 18.0" x 135.0' long Culvert CMP, projecting, no headwall, Ke= 0.900 Outlet Invert= 299.00' S= 0.0100 '/' Cc= 0.900								
	n= 0.030 Corrugated metal								
Primary OutFlow Max=1.04 cfs @ 12.52 hrs HW=301.00' (Free Discharge) -1=Culvert (Barrel Controls 1.04 cfs @ 2.1 fps)									
	Pond WP: ex pond								
Inflow = 5.50 cfs @ Outflow = 1.04 cfs @	Inflow Depth = 2.44" for Q-100 event 12.07 hrs, Volume= 0.346 af 12.46 hrs, Volume= 0.343 af, Atten= 81%, Lag= 23.5 min 12.46 hrs, Volume= 0.343 af								
Starting Elev= 309.00' Surf.Ar Peak Elev= 309.52' @ 12.46 hr	me Span= 2.00-36.00 hrs, dt= 0.02 hrs ea= 12,211 sf Storage= 30,661 cf rs Surf.Area= 12,618 sf Storage= 37,057 cf (6,396 cf above start) calculated: initial storage excedes outflow) 1 min (989.5 - 842.5)								
Volume Invert Avail.	Storage Storage Description								
#1 306.00' 64	4,766 cf Custom Stage Data (Prismatic)Listed below (Recalc)								
Elevation Surf.Area	Inc.Store Cum.Store								
(feet) (sq-ft)	(cubic-feet) (cubic-feet)								
306.00 5,000	0 0								
307.00 10,633	7,817 7,817								
310.00 13,000	35,450 43,266								
311.00 30,000	21,500 64,766								
Device Routing Invert	Outlet Devices								
#1 Primary 309.00'	1.0' long x 1.0' breadth Broad-Crested Rectangular Weir								
	Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00								
	2.50 3.00								
	Coef. (English) 2.69 2.72 2.75 2.85 2.98 3.08 3.20 3.28 3.31 3.30								
	3.31 3.32								
#2 Primary 309.50'	3.0' long x 1.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00								
	2.50 3.00								

Primary OutFlow Max=1.03 cfs @ 12.46 hrs HW=309.52' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 1.01 cfs @ 2.0 fps) 2=Broad-Crested Rectangular Weir (Weir Controls 0.02 cfs @ 0.3 fps)

3.31 3.32

severance proposed SN 001								
Prepared by Civil Engineering Associates								
HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC								

Time span=2.00-72.00 hrs, dt=0.02 hrs, 3501 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 2:	Flow Length=505'	Runoff Area=1.522 ac Runoff Depth=1.41" Tc=2.8 min CN=93 Runoff=4.11 cfs 0.178 af
Subcatchment 3:	Flow Length=479'	Runoff Area=1.276 ac Runoff Depth=0.62" Tc=5.0 min CN=80 Runoff=1.46 cfs 0.066 af
Subcatchment 4:	Flow Length=415'	Runoff Area=1.661 ac Runoff Depth=1.67" Tc=2.0 min CN=96 Runoff=5.17 cfs 0.231 af
Subcatchment 5:	Flow Length=370'	Runoff Area=0.638 ac Runoff Depth=1.33" Tc=3.6 min CN=92 Runoff=1.60 cfs 0.071 af
Subcatchment 6:	Flow Length=144'	Runoff Area=1.007 ac Runoff Depth=1.33" Tc=3.3 min CN=92 Runoff=2.55 cfs 0.111 af
Subcatchment 7:	Flow Length=316'	Runoff Area=1.715 ac Runoff Depth=1.11" Tc=3.4 min CN=89 Runoff=3.71 cfs 0.159 af
Subcatchment 8:	Flow Length=74'	Runoff Area=1.250 ac Runoff Depth=1.18" Tc=8.4 min CN=90 Runoff=2.39 cfs 0.123 af
Subcatchment 9:	Flow Length=109'	Runoff Area=0.664 ac Runoff Depth=1.25" Tc=4.2 min CN=91 Runoff=1.55 cfs 0.069 af
Subcatchment 10:	Flow Length=140'	Runoff Area=0.916 ac Runoff Depth=1.11" Tc=2.1 min CN=89 Runoff=2.06 cfs 0.085 af
Subcatchment 11:	Flow Length=393'	Runoff Area=0.649 ac Runoff Depth=1.41" Tc=4.5 min CN=93 Runoff=1.66 cfs 0.076 af
Subcatchment 12:	Flow Length=481'	Runoff Area=1.738 ac Runoff Depth=1.11" Tc=8.4 min CN=89 Runoff=3.15 cfs 0.161 af
Subcatchment 13:	Flow Length=220'	Runoff Area=1.810 ac Runoff Depth=1.49" Tc=4.7 min CN=94 Runoff=4.80 cfs 0.225 af
Subcatchment 14:	Flow Length=510'	Runoff Area=0.943 ac Runoff Depth=1.41" Tc=6.7 min CN=93 Runoff=2.23 cfs 0.111 af
Subcatchment 15:	Flow Length=350'	Runoff Area=1.339 ac Runoff Depth=1.33" Tc=2.2 min CN=92 Runoff=3.50 cfs 0.148 af
Subcatchment 16: forbay area	Flow Length=100'	Runoff Area=1.586 ac Runoff Depth=0.21" Tc=4.3 min CN=67 Runoff=0.40 cfs 0.027 af

severance proposed SN 001 Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

Subcatchment 17: pond area	Runoff Area=2.458 ac Runoff Depth=0.16" Flow Length=77' Tc=3.1 min CN=65 Runoff=0.42 cfs 0.033 af
Subcatchment A: post-dev	Runoff Area=447,647 sf Runoff Depth=0.05" Flow Length=1,230' Tc=23.2 min CN=58 Runoff=0.06 cfs 0.046 af
Subcatchment B: post-dev	Runoff Area=641,086 sf Runoff Depth=0.02" Flow Length=1,580' Tc=22.7 min CN=55 Runoff=0.04 cfs 0.030 af
Subcatchment C: post-dev	Runoff Area=1,527,401 sf Runoff Depth=0.00" Flow Length=990' Tc=20.9 min CN=49 Runoff=0.00 cfs 0.000 af
Subcatchment D:	Runoff Area=239,147 sf Runoff Depth=0.00" Flow Length=385' Tc=12.2 min CN=50 Runoff=0.00 cfs 0.000 af
Subcatchment E: western side of rte	7 Runoff Area=314,587 sf Runoff Depth=0.09" Flow Length=1,220' Tc=10.0 min CN=61 Runoff=0.13 cfs 0.056 af
Reach 1R: stream reach n=0.045	Peak Depth=0.05' Max Vel=0.8 fps Inflow=0.13 cfs 0.087 af L=330.0' S=0.0300 '/' Capacity=17.80 cfs Outflow=0.13 cfs 0.087 af
Reach 2R: stream reach n=0.045	Peak Depth=0.00' Max Vel=0.2 fps Inflow=0.00 cfs 0.000 af L=1,750.0' S=0.0340 '/' Capacity=6.48 cfs Outflow=0.00 cfs 0.000 af
Reach 3R: ex. roadside ditch n=0.030	Peak Depth=0.13' Max Vel=3.2 fps Inflow=0.93 cfs 1.915 af L=470.0' S=0.0745 '/' Capacity=91.77 cfs Outflow=0.93 cfs 1.915 af
Reach 4R: (S/N 001) 4' culvert under n D=48.0" n=0.030	t 7 Peak Depth=0.29' Max Vel=2.5 fps Inflow=1.03 cfs 2.003 af L=175.0' S=0.0229 '/' Capacity=94.11 cfs Outflow=1.03 cfs 2.003 af
Reach sl: stone lined channel n=0.040 L	Peak Depth=0.09' Max Vel=2.4 fps Inflow=0.87 cfs 1.869 af =365.0' S=0.1205 '/' Capacity=133.67 cfs Outflow=0.87 cfs 1.869 af
Pond 1P: pond main pool Primary=0.87	Peak Elev=247.82' Storage=88,063 cf Inflow=22.63 cfs 1.875 af cfs 1.869 af Secondary=0.00 cfs 0.000 af Outflow=0.87 cfs 1.869 af
Pond 2P: forbay Primary=22.33 c	Peak Elev=266.18' Storage=17,898 cf Inflow=38.18 cfs 1.841 af fs 1.841 af Secondary=0.00 cfs 0.000 af Outflow=22.33 cfs 1.841 af
Pond CB41:	Peak Elev=305.81' Inflow=4.80 cfs 0.225 af 18.0" x 270.0' Culvert Outflow=4.80 cfs 0.225 af
Pond CB62:	Peak Elev=300.73' Inflow=28.57 cfs 1.403 af 36.0" x 260.0' Culvert Outflow=28.57 cfs 1.403 af
Pond CB64:	Peak Elev=299.41' Inflow=34.54 cfs 1.666 af 42.0" x 360.0' Culvert Outflow=34.54 cfs 1.666 af
Pond CB79: line to pond	Peak Elev=297.03' Inflow=37.90 cfs 1.814 af 42.0" x 115.0' Culvert Outflow=37.90 cfs 1.814 af

severance proposed SN 001 Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software So	Type II 24-hr Q-1 Rainfall=2.10" Page 4 Iutions LLC
Pond DMH 5:	Peak Elev=303.29' Inflow=6.96 cfs 0.335 af 20.0" x 142.0' Culvert Outflow=6.96 cfs 0.335 af
Pond DMH1:	Peak Elev=306.97' Inflow=6.36 cfs 0.298 af 20.0" x 251.0' Culvert Outflow=6.36 cfs 0.298 af
Pond DMH2:	Peak Elev=302.22' Inflow=25.37 cfs 1.258 af 36.0" x 432.0' Culvert Outflow=25.37 cfs 1.258 af
Pond DMH3:	Peak Elev=303.10' Inflow=4.15 cfs 0.182 af 18.0" x 425.0' Culvert Outflow=4.15 cfs 0.182 af
Pond DMH4:	Peak Elev=302.82' Inflow=9.86 cfs 0.496 af 24.0" x 210.0' Culvert Outflow=9.86 cfs 0.496 af

Total Runoff Area = 93.942 ac Runoff Volume = 2.008 af Average Runoff Depth = 0.26"

Subcatchment 2:

Runoff = 4.11 cfs @ 11.93 hrs, Volume= 0.178 af, Depth= 1.41"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-1 Rainfall=2.10"

Area	(ac) C	N Desc	cription		
1.	186 9		ed parking		
0.	.336 7	′4 >75°	% Grass co	over, Good,	, HSG C
1.	.522 9	93 Weig	ghted Aver	age	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
1.2	<u>(1881)</u> 75	0.0160	<u>(103ec)</u> 1.0	(015)	Shoot Flow, flow off norking lot
1.2	75	0.0100	1.0		Sheet Flow, flow off parking lot Smooth surfaces n= 0.011 P2= 2.30"
1.2	300	0.0060	4.1	5.00	
					Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31'
0.4	130	0.0070	5.3	11.64	n= 0.013 Corrugated PE, smooth interior Circular Channel (pipe), flow to CB 65
0.4	100	0.0070	0.0	11.04	Diam= 20.0" Area= 2.2 sf Perim= 5.2' r= 0.42'
					n= 0.013 Corrugated PE, smooth interior
2.8	505	Total			

Subcatchment 3:

Runoff = 1.46 cfs @ 11.97 hrs, Volume= 0.066 af, Depth= 0.62"

Area	(ac) C	N Desc	cription		
-			ed parking % Grass co	& roofs over, Good	. HSG B
1.			phted Aver	,	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
3.2	35	0.0600	0.2		Sheet Flow, flow to YD Grass: Short n= 0.150 P2= 2.30"
1.3	300	0.0074	3.9	3.06	Circular Channel (pipe), Diam= 12.0" Area= 0.8 sf Perim= 3.1' r= 0.25'
0.5	144	0.0080	4.7	5.78	n= 0.013 Corrugated PE, smooth interior Circular Channel (pipe), line to DMH 1 Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31' n= 0.013 Corrugated PE, smooth interior
5.0	479	Total			· · ·

Subcatchment 4:

Runoff	=	5.17 cfs @	11.92 hrs, Volume=	0.231 af, Depth= 1.67"
--------	---	------------	--------------------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-1 Rainfall=2.10"

Area	(ac) C	N Desc	cription						
	1.523 98 Paved parking & roofs								
	0.138 74 >75% Grass cover, Good, HSG C								
1.	1.661 96 Weighted Average								
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	p				
0.7	50	0.0300	1.2		Sheet Flow, flow off parking lot				
4.0	0.05	0 0005		5.00	Smooth surfaces n= 0.011 P2= 2.30"				
1.3	365	0.0085	4.9	5.96	Circular Channel (pipe), flow to DMH 1 Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31'				
					n= 0.013 Corrugated PE, smooth interior				
2.0	415	Total							
-	-								
				Subo	atchment 5:				
Runoff	=	1.60 cfs	s@ 11.9	4 hrs, Volu	me= 0.071 af, Depth= 1.33"				
Dupoff b		2 20 moth		CS Time S	Span= 2.00-72.00 hrs, dt= 0.02 hrs				
		Rainfall=		CO, TIME C	span- 2.00-72.00 ms, ut= 0.02 ms				
Area			cription						
			ed parking		1122.2				
-				over, Good,	HSG C				
0.	.638 9	92 Weig	phted Aver	age					
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
2.3	30	0.1000	0.2	. ,	Sheet Flow, flow off lawn				
					Grass: Short n= 0.150 P2= 2.30"				
0.8	140	0.0210	2.9		Shallow Concentrated Flow, flow along curb				
0.5	200	0.0180	7.1	8.67	Paved Kv= 20.3 fps Circular Channel (pipe), flow in storm line				
	200	0.0100	7.1	0.07	Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31'				
0.0									
0.0					n= 0.013 Corrugated PE, smooth interior				
3.6	370	Total							

Subcatchment 6:

Runoff = 2.55 cfs @ 11.94 hrs, Volume= 0.111 af, Depth= 1.33"

Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

	(ac) C	N Desc	cription							
0.745 98 Paved parking & roofs										
-	0.262 74 >75% Grass cover, Good, HSG C 1.007 92 Weighted Average									
1.	007 8		jilleu Avei	aye						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
2.7	30	0.0670	0.2		Sheet Flow, flow off grass					
0.1	20	0.0120	2.2		Grass: Short n= 0.150 P2= 2.30" Shallow Concentrated Flow, flow along curb Paved Kv= 20.3 fps					
0.5	94	0.0040	3.3	4.09	Circular Channel (pipe), flow in storm line Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31' n= 0.013 Corrugated PE, smooth interior					
3.3	144	Total								
				• •						
				Subo	catchment 7:					
Runoff	=	3.71 cfs	s@ 11.94	4 hrs, Volu	me= 0.159 af, Depth= 1.11"					
			Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-1 Rainfall=2.10"							
Area										
Area (ac) CN Description 1.045 98 Paved parking & roofs										
				& roofs						
1. 0.	045 9 670 7	98 Pave 74 >75%	ed parking % Grass co	over, Good	, HSG C					
1. 0.	045 9 670 7	98 Pave 74 >75%	ed parking	over, Good	, HSG C					
1. 0.	045 9 670 7	98 Pave 74 >75%	ed parking % Grass co	over, Good	, HSG C Description					
1. 0. 1. Tc	045 9 670 7 715 8 Length	08 Pave 24 >759 39 Weig Slope	ed parking <u>& Grass co</u> hted Aver Velocity	over, Good, age Capacity	Description Sheet Flow, flow to YD					
1. 0. 1. Tc (min) 2.5	045 9 670 7 715 8 Length (feet) 25	08 Pave 24 >759 39 Weig Slope (ft/ft) 0.0600	ed parking <u>% Grass co</u> ghted Aver Velocity (ft/sec) 0.2	over, Good, age Capacity (cfs)	Description Sheet Flow, flow to YD Grass: Short n= 0.150 P2= 2.30"					
1. 0. 1. Tc (min)	045 9 670 7 715 8 Length (feet)	08 Pave 24 >759 99 Weig Slope (ft/ft)	ed parking <u>% Grass co</u> jhted Aver Velocity (ft/sec)	over, Good, age Capacity	Description Sheet Flow, flow to YD Grass: Short n= 0.150 P2= 2.30" Circular Channel (pipe),					
1. 0. 1. Tc (min) 2.5 0.6	045 9 670 7 715 8 Length (feet) 25 115	08 Pave 24 >759 39 Weig Slope (ft/ft) 0.0600 0.0050	ed parking <u>% Grass co</u> ghted Aver Velocity (ft/sec) 0.2 3.2	over, Good, rage Capacity (cfs) 2.52	Description Sheet Flow, flow to YD Grass: Short n= 0.150 P2= 2.30" Circular Channel (pipe), Diam= 12.0" Area= 0.8 sf Perim= 3.1' r= 0.25' n= 0.013 Corrugated PE, smooth interior					
1. 0. 1. Tc (min) 2.5	045 9 670 7 715 8 Length (feet) 25 115	08 Pave 24 >759 39 Weig Slope (ft/ft) 0.0600	ed parking <u>% Grass co</u> ghted Aver Velocity (ft/sec) 0.2	over, Good, rage Capacity (cfs) 2.52	Description Sheet Flow, flow to YD Grass: Short n= 0.150 P2= 2.30" Circular Channel (pipe), Diam= 12.0" Area= 0.8 sf Perim= 3.1' r= 0.25' n= 0.013 Corrugated PE, smooth interior Circular Channel (pipe),					
1. 0. 1. Tc (min) 2.5 0.6	045 9 670 7 715 8 Length (feet) 25 115	08 Pave 24 >759 39 Weig Slope (ft/ft) 0.0600 0.0050	ed parking <u>% Grass co</u> ghted Aver Velocity (ft/sec) 0.2 3.2	over, Good, rage Capacity (cfs) 2.52	Description Sheet Flow, flow to YD Grass: Short n= 0.150 P2= 2.30" Circular Channel (pipe), Diam= 12.0" Area= 0.8 sf Perim= 3.1' r= 0.25' n= 0.013 Corrugated PE, smooth interior					
1. 0. 1. Tc (min) 2.5 0.6	045 9 670 7 715 8 Length (feet) 25 115 110	08 Pave 24 >759 39 Weig Slope (ft/ft) 0.0600 0.0050	ed parking <u>% Grass co</u> ghted Aver Velocity (ft/sec) 0.2 3.2	over, Good, rage Capacity (cfs) 2.52	Description Sheet Flow, flow to YD Grass: Short n= 0.150 P2= 2.30" Circular Channel (pipe), Diam= 12.0" Area= 0.8 sf Perim= 3.1' r= 0.25' n= 0.013 Corrugated PE, smooth interior Circular Channel (pipe), Diam= 12.0" Area= 0.8 sf Perim= 3.1' r= 0.25' n= 0.013 Corrugated PE, smooth interior Circular Channel (pipe), line to DMH 2					
1. 0. 1. Tc (min) 2.5 0.6 0.1	045 9 670 7 715 8 Length (feet) 25 115 110	08 Pave 24 >759 39 Weig Slope (ft/ft) 0.0600 0.0050 0.0850	ed parking <u>% Grass co</u> ghted Aver Velocity (ft/sec) 0.2 3.2 13.2	over, Good, rage Capacity (cfs) 2.52 10.39	Description Sheet Flow, flow to YD Grass: Short n= 0.150 P2= 2.30" Circular Channel (pipe), Diam= 12.0" Area= 0.8 sf Perim= 3.1' r= 0.25' n= 0.013 Corrugated PE, smooth interior Circular Channel (pipe), Diam= 12.0" Area= 0.8 sf Perim= 3.1' r= 0.25' n= 0.013 Corrugated PE, smooth interior					

Subcatchment 8:

Runoff = 2.39 cfs @ 12.00 hrs, Volume= 0.123 af, Depth= 1.18"

severance proposed SN 001

Type II 24-hr Q-1 Rainfall=2.10" Page 8 1/9/2007

Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

Area	(ac) C	N Desc	cription					
			ed parking					
				over, Good	, HSG C			
1.250 90 Weighted Average								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.4	60	0.0310	0.2		Sheet Flow,			
					Grass: Short n= 0.150 P2= 2.30"			
0.2	8	0.0200	0.7		Sheet Flow, flow across sidewalk			
	•				Smooth surfaces n= 0.011 P2= 2.30"			
1.8	6	0.0200	0.1		Sheet Flow, flow to street CB 52			
		-			Grass: Dense n= 0.240 P2= 2.30"			
8.4	74	Total						
				0				
				Subo	catchment 9:			
Runoff	=	1.55 cfs	s @ 11.9	5 hrs, Volu	me= 0.069 af, Depth= 1.25"			
Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-1 Rainfall=2.10"								
Area	Area (ac) CN Description							

_	Area	<u>(ac) C</u>	N Desc	cription					
	0.	482 9	8 Pave	ed parking	& roofs				
	0.	182 7			over, Good	, HSG C			
	0.664 91 Weighted Average								
	elee i ele ilege								
	Тс	Length	Slope	Velocity	Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•			
_	2.0	18	0.0500	0.1		Sheet Flow,			
	-	-		-		Grass: Short n= 0.150 P2= 2.30"			
	0.2	8	0.0300	0.8		Sheet Flow,			
						Smooth surfaces n= 0.011 P2= 2.30"			
	1.5	8	0.0200	0.1		Sheet Flow,			
						Grass: Short n= 0.150 P2= 2.30"			
	0.5	75	0.0180	2.7		Shallow Concentrated Flow, flow along curb to CB 62			
						Paved Kv= 20.3 fps			
_	4.2	109	Total			·			

Subcatchment 10:

Runoff = 2.06 cfs @ 11.93 hrs, Volume= 0.085 af, Depth= 1.11"

 Area (ac)	CN	Description
0.564	98	Paved parking & roofs
 0.352	74	>75% Grass cover, Good, HSG C
0.916	89	Weighted Average

_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	1.2	18	0.2000	0.3		Sheet Flow, Grass: Short n= 0.150 P2= 2.30"
	0.8	90	0.0160	1.9		Shallow Concentrated Flow, roadside swale
	0.1	32	0.0150	6.4	7.91	Grassed Waterway Kv= 15.0 fps Circular Channel (pipe), flow to CB 76 Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31' n= 0.013 Corrugated PE, smooth interior
-	2.1	140	Total			······································

Subcatchment 11:

Runoff = 1.66 cfs @ 11.95 hrs, Volume= 0.076 af, Depth= 1.41"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-1 Rainfall=2.10"

Area	(ac) C	N Desc	cription							
0.	510 9	8 Pave	ed parking	& roofs						
0.	0.139 74 >75% Grass cover, Good, HSG C									
0.	0.649 93 Weighted Average									
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
2.9	25	0.0400	0.1		Sheet Flow,					
					Grass: Short n= 0.150 P2= 2.30"					
1.1	65	0.0180	1.0		Sheet Flow, flow across lot					
					Smooth surfaces n= 0.011 P2= 2.30"					
0.3	195	0.0380	10.3	12.59	Circular Channel (pipe), flow in line to DMH 6					
					Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31'					
					n= 0.013 Corrugated PE, smooth interior					
0.2	108	0.0190	8.2	14.48	Circular Channel (pipe), line to CB 62					
					Diam= 18.0" Area= 1.8 sf Perim= 4.7' r= 0.38'					
					n= 0.013 Corrugated PE, smooth interior					
4.5	393	Total								

Subcatchment 12:

Runoff = 3.15 cfs @ 12.00 hrs, Volume= 0.161 af, Depth= 1.11"

 Area (ac)	CN	Description
1.061	98	Paved parking & roofs
 0.677	74	>75% Grass cover, Good, HSG C
1.738	89	Weighted Average

severance proposed SN 001

Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	7.0	75	0.0400	0.2		Sheet Flow, flow to YD Grass: Short n= 0.150 P2= 2.30"
	0.2	36	0.0060	3.5	2.76	Circular Channel (pipe), flow in YD line Diam= 12.0" Area= 0.8 sf Perim= 3.1' r= 0.25'
	1.2	370	0.0090	5.0	6.13	n= 0.013 Corrugated PE, smooth interior Circular Channel (pipe), flow to DMH 4 Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31' n= 0.013 Corrugated PE, smooth interior
-						

8.4 481 Total

Subcatchment 13:

Runoff = 4.80 cfs @ 11.96 hrs, Volume= 0.225 af, Depth= 1.49"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-1 Rainfall=2.10"

Area	(ac) C	N Dese	cription		
1.	546 9	8 Pave	ed parking	& roofs	
0.	<u>264 7</u>	'4 >75 <u>'</u>	% Grass co	over, Good	, HSG C
1.	810 9	4 Weig	ghted Aver	age	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
3.6	30	0.0330	0.1	<u> </u>	Sheet Flow, flow off lawn
1.1	190	0.0200	2.9		Grass: Short n= 0.150 P2= 2.30" Shallow Concentrated Flow, flow along curb Paved Kv= 20.3 fps
4.7	220	Total			

Subcatchment 14:

Runoff = 2.23 cfs @ 11.98 hrs, Volume= 0.111 af, Depth= 1.41"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-1 Rainfall=2.10"

 Area (ac)	CN	Description
 0.765	98	Paved parking & roofs
 0.178	74	>75% Grass cover, Good, HSG C
0.943	93	Weighted Average

Type II 24-hr Q-1 Rainfall=2.10" Page 10 1/9/2007

severance proposed SN 001

Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
4.3		0.0290	0.1		Sheet Flow, flow off lawn Grass: Short n= 0.150 P2= 2.30"
0.4	80	0.0250	3.2		Shallow Concentrated Flow, flow along curb Paved Kv= 20.3 fps
2.0	395	0.0040	3.3	4.09	Circular Channel (pipe), flow in pipe to DMH 5 Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31' n= 0.013 Corrugated PE, smooth interior

6.7 510 Total

Subcatchment 15:

Runoff = 3.50 cfs @ 11.93 hrs, Volume= 0.148 af, Depth= 1.33"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-1 Rainfall=2.10"

Area	(ac) C	N Desc	cription			
			ed parking		HSG C	
0.32874>75% Grass cover, Good, HSG C1.33992Weighted Average						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
1.3	90	0.0200	1.1		Sheet Flow, flow across parking lot Smooth surfaces n= 0.011 P2= 2.30"	
0.8	150	0.0220	3.0		Shallow Concentrated Flow,	
0.1	110	0.0800	14.9	18.27	Paved Kv= 20.3 fps Circular Channel (pipe), line to CB 79 Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31' n= 0.013 Corrugated PE, smooth interior	
2.2	350	Total				

Subcatchment 16: forbay area

Runoff = 0.40 cfs @ 11.99 hrs, Volume= 0.027 af, Depth= 0.21"

 Area (ac)	CN	Description
0.094	98	Paved parking & roofs
0.103	85	Gravel roads, HSG B
0.386	78	Meadow, non-grazed, HSG D
 1.003	58	Meadow, non-grazed, HSG B
1.586	67	Weighted Average

severance proposed SN 001	Type II 24-hr Q-1 Rainfall=2.10"
Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Sc	oftware Solutions LLC Page 12 1/9/2007
Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs)	Description
4.3 100 0.2360 0.4	Sheet Flow, flow from pond bank Grass: Short n= 0.150 P2= 2.30"
Subcatchr	nent 17: pond area
Caboatom	
Runoff = 0.42 cfs @ 11.98 hrs, Volu	me= 0.033 af, Depth= 0.16"
Runoff by SCS TR-20 method, UH=SCS, Time S Type II 24-hr Q-1 Rainfall=2.10"	Span= 2.00-72.00 hrs, dt= 0.02 hrs
Area (ac) CN Description	
0.562 55 Woods, Good, HSG B	
0.298 58 Meadow, non-grazed, HS 0.289 98 pond water surface	GB
1.199 61 >75% Grass cover, Good,	, HSG B
0.110 89 Gravel roads, HSG C 2.458 65 Weighted Average	
2.456 65 Weighted Average	
Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs)	Description
3.1 77 0.3300 0.4	Sheet Flow, flow on pond bank Grass: Short n= 0.150 P2= 2.30"
Subcatch	iment A: post-dev
Runoff = 0.06 cfs @ 13.64 hrs, Volu	me= 0.046 af, Depth= 0.05"
Runoff by SCS TR-20 method, UH=SCS, Time S Type II 24-hr Q-1 Rainfall=2.10"	Span= 2.00-72.00 hrs, dt= 0.02 hrs
Area (sf) CN Description	
23,840 98 ex road	
27,667 48 Brush, Good, HSG B	
29,865 77 Woods, Good, HSG D 366,275 55 Woods, Good, HSG B	
447,647 58 Weighted Average	
Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs)	Description
19.0 150 0.0130 0.1	Sheet Flow,
2.8 340 0.1600 2.0	Grass: Short n= 0.150 P2= 2.30" Shallow Concentrated Flow,
1 4 740 0 1000 8 0 04 00	Woodland Kv= 5.0 fps
1.4 740 0.1000 8.9 24.00	Trap/Vee/Rect Channel Flow, Bot.W=2.00' D=0.67' Z= 3.0 '/' Top.W=6.02'
	n= 0.030 Earth, grassed & winding
23.2 1,230 Total	

Subcatchment B: post-dev

Runoff = 0.04 cfs @ 17.98 hrs, Volume= 0.030 af, Depth= 0.02"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-1 Rainfall=2.10"

_	A	rea (sf)	CN	Description		
	6	41,086	55	Woods, Go	od, HSG B	
	Tc (min)	Length (feet)			Capacity (cfs)	Description
	15.2	100	0.010	0.1		Sheet Flow,
	1.4	125	5 0.0100	0 1.5		Grass: Short n= 0.150 P2= 2.30" Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps
	1.0	155	5 0.2900	2.7		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	1.8	400	0.100	3.7	2.44	Trap/Vee/Rect Channel Flow,
						Bot.W=1.00' D=0.33' Z= 3.0 '/' Top.W=2.98' n= 0.045 Winding stream, pools & shoals
	3.3	800	0.047	0 4.0	6.05	Trap/Vee/Rect Channel Flow,
						Bot.W=2.00' D=0.50' Z= 2.0 '/' Top.W=4.00'
_						n= 0.040 Winding stream, pools & shoals
	22.7	1 580) Total			

22.7 1,580 Total

Subcatchment C: post-dev

Runoff = 0.00 cfs @ 24.12 hrs, Volume= 0.000 af, Depth= 0.00"

Area (sf)	CN	Description	
22,400	98	ex road and bikepath	
40,990	98	ex houses and drives	
165,352	70	Woods, Good, HSG C	
517,000	30	Woods, Good, HSG A	
43,081	39	>75% Grass cover, Good, HSG A	
738,578	55	Woods, Good, HSG B	
1,527,401	49	Weighted Average	

severance proposed SN 001

Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	14.3	100	0.0150	0.1		Sheet Flow,
						Cultivated: Residue>20% n= 0.170 P2= 2.30"
	2.4	160	0.0150	1.1		Shallow Concentrated Flow,
						Cultivated Straight Rows Kv= 9.0 fps
	1.2	180	0.2670	2.6		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	3.0	550	0.0330	3.1	3.08	Trap/Vee/Rect Channel Flow,
						Bot.W=1.00' D=0.50' Z= 2.0 '/' Top.W=3.00'
						n= 0.040 Winding stream, pools & shoals
-						

20.9 990 Total

Subcatchment D:

Runoff	=	0.00 cfs @	24.02 hrs,	Volume=	0.000 af, L	Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-1 Rainfall=2.10"

A	rea (sf)	CN I	Description		
	7,500	98 0	ex road		
1	68,267	55 \	Noods, Go	od, HSG B	
	63,380	30 \	Noods, Go	od, HSG A	
2	239,147	50	Neighted A	verage	
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
10.7	120	0.2500	0.2		Sheet Flow,
1.5	265	0.3400	2.9		Woods: Light underbrush n= 0.400 P2= 2.30" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
12.2	385	Total			

Subcatchment E: western side of rte 7

Runoff = 0.13 cfs @ 12.37 hrs, Volume= 0.056 af, Depth= 0.09"

 Area (sf)	CN	Description
23,840	98	ex pavement
 290,747	58	Woods/grass comb., Good, HSG B
 314,587	61	Weighted Average

severance proposed SN 001

Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

	Type II 24-hr Q-1	Rainfall=2.10"
		Page 15
ions LLC		1/9/2007

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.7	70	0.4000	0.2		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.30"
0.9	175	0.4000	3.2		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
1.7	800	0.1000	7.6	11.96	Trap/Vee/Rect Channel Flow, roadside ditch
					Bot.W=1.00' D=0.67' Z= 2.0 '/' Top.W=3.68'
					n= 0.033 Earth, grassed & winding
0.7	175	0.0200	4.4	13.86	
					Diam= 24.0" Area= 3.1 sf Perim= 6.3' r= 0.50'
					n= 0.030 Corrugated metal
1.0					Direct Entry, outlet conditions

10.0 1,220 Total

Reach 1R: stream reach

Inflow Area	a =	62.494 ac, Inflow Depth = 0.02"	for Q-1 event	
Inflow	=	0.13 cfs @ 12.37 hrs, Volume=	• 0.087 af	
Outflow	=	0.13 cfs @ 12.45 hrs, Volume=	• 0.087 af,	Atten= 2%, Lag= 4.7 min

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Max. Velocity= 0.8 fps, Min. Travel Time= 6.9 min Avg. Velocity = 0.5 fps, Avg. Travel Time= 10.4 min

Peak Depth= 0.05' @ 12.45 hrs Capacity at bank full= 17.80 cfs 3.00' x 1.00' deep channel, n= 0.045 Winding stream, pools & shoals Side Slope Z-value= 1.0 '/' Top Width= 5.00' Length= 330.0' Slope= 0.0300 '/'

Reach 2R: stream reach

Inflow Area =	35.064 ac, Inflow Depth = 0.00"	for Q-1 event	
Inflow =	0.00 cfs @ 24.12 hrs, Volume=	0.000 af	
Outflow =	0.00 cfs @ 24.45 hrs, Volume=	0.000 af, Atten= 80%, Lag= 19.7 min	

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Max. Velocity= 0.2 fps, Min. Travel Time= 135.3 min Avg. Velocity = 0.2 fps, Avg. Travel Time= 135.3 min

Peak Depth= 0.00' @ 24.45 hrs Capacity at bank full= 6.48 cfs 2.00' x 0.67' deep channel, n= 0.045 Winding stream, pools & shoals Side Slope Z-value= 1.0 '/' Top Width= 3.34' Length= 1,750.0' Slope= 0.0340 '/'

Reach 3R: ex. roadside ditch

 Inflow Area =
 31.449 ac, Inflow Depth > 0.73" for Q-1 event

 Inflow =
 0.93 cfs @ 15.24 hrs, Volume=
 1.915 af

 Outflow =
 0.93 cfs @ 15.25 hrs, Volume=
 1.915 af, Atten= 0%, Lag= 0.7 min

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Max. Velocity= 3.2 fps, Min. Travel Time= 2.5 min Avg. Velocity = 1.9 fps, Avg. Travel Time= 4.2 min

Peak Depth= 0.13' @ 15.25 hrs Capacity at bank full= 91.77 cfs Inlet Invert= 200.00', Outlet Invert= 165.00' 2.00' x 1.50' deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 2.0 '/' Top Width= 8.00' Length= 470.0' Slope= 0.0745 '/'

Reach 4R: (S/N 001) 4' culvert under rt 7

Inflow Area	a =	93.942 ac, Inflow Depth > 0.	.26" for Q-1 event
Inflow	=	1.03 cfs @ 15.24 hrs, Volur	me= 2.003 af
Outflow	=	1.03 cfs @ 15.24 hrs, Volur	me= 2.003 af, Atten= 0%, Lag= 0.0 min

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Max. Velocity= 2.5 fps, Min. Travel Time= 1.2 min Avg. Velocity = 1.5 fps, Avg. Travel Time= 1.9 min

Peak Depth= 0.29' @ 15.24 hrs Capacity at bank full= 94.11 cfs Inlet Invert= 160.00', Outlet Invert= 156.00' 48.0" Diameter Pipe, n= 0.030 Corrugated metal Length= 175.0' Slope= 0.0229 '/'

Reach sl: stone lined channel

 Inflow Area =
 21.172 ac, Inflow Depth > 1.06" for Q-1 event

 Inflow =
 0.87 cfs @
 15.66 hrs, Volume=
 1.869 af

 Outflow =
 0.87 cfs @
 15.69 hrs, Volume=
 1.869 af, Atten= 0%, Lag= 1.6 min

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Max. Velocity= 2.4 fps, Min. Travel Time= 2.5 min Avg. Velocity = 1.5 fps, Avg. Travel Time= 4.0 min

Peak Depth= 0.09' @ 15.69 hrs Capacity at bank full= 133.67 cfs Inlet Invert= 234.00', Outlet Invert= 190.00' 4.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 365.0' Slope= 0.1205 '/'

Pond 1P: pond main pool

Inflow Area =	21.172 ac, Inflow Depth = 1.06"	for Q-1 event
Inflow =	22.63 cfs @ 12.01 hrs, Volume=	1.875 af
Outflow =	0.87 cfs @ 15.66 hrs, Volume=	1.869 af, Atten= 96%, Lag= 219.1 min
Primary =	0.87 cfs @ 15.66 hrs, Volume=	1.869 af
Secondary =	0.00 cfs @ 2.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Starting Elev= 245.00' Surf.Area= 12,637 sf Storage= 36,029 cf Peak Elev= 247.82' @ 15.66 hrs Surf.Area= 21,211 sf Storage= 88,063 cf (52,034 cf above start) Plug-Flow detention time= 1,279.9 min calculated for 1.042 af (56% of inflow) Center-of-Mass det. time= 738.6 min (1,559.0 - 820.4)

Volume	Invert	Avail.	Storage Storage	Description		
#1	240.00'	526	6,586 cf Custom	Stage Data (Prismatic)Listed below	v (Recalc)	
Elevatio		urf.Area	Inc.Store	Cum.Store		
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)		
240.0		4,312	0	0		
242.0		6,232	10,544	10,544		
244.0		8,623	14,855	25,399		
245.0		12,637	10,630	36,029		
245.		17,255	7,473	43,502		
246.0		18,082	8,834	52,336		
248.0		21,523	39,605	91,941		
250.0		25,190	46,713	138,654		
262.0	00	29,084	325,644	464,298		
264.0	00	33,204	62,288	526,586		
Device	Routing	Invert	Outlet Devices			
#1	Primary	245.00'		ng Culvert CPP, square edge head	dwall Ke= 0.500	
	i innary	210.00		2.00' S= 0.0300 '/' Cc= 0.900		
				ated PE, smooth interior		
#2	Device 1	241.00'		Culvert CPP, projecting, no head	vall Ke= 0.900	
	Device	211.00		3.00' S= -0.0667 '/' Cc= 0.900		
			n= 0.010 PVC, s			
#3	Device 1	248.80'		ice/Grate Limited to weir flow C=	0.600	
#0 #4	Secondary	253.00'		breadth Broad-Crested Rectangu		
<i>п</i> -т	Occondary	200.00		0.40 0.60 0.80 1.00 1.20 1.40 1		
				.68 2.70 2.70 2.64 2.63 2.64 2.6		
				.00 2.10 2.10 2.04 2.00 2.04 2.0	/T 2.00	
Priman		ax=0.87 c	fs @ 15.66 hrs H\	/=247 82' TW=234 09' (Dynamic]	Failwater)	
	Primary OutFlow Max=0.87 cfs @ 15.66 hrs HW=247.82' TW=234.09' (Dynamic Tailwater)					

1=Culvert (Passes 0.87 cfs of 20.40 cfs potential flow)

-2=Culvert (Inlet Controls 0.87 cfs @ 6.4 fps)

-3=Orifice/Grate (Controls 0.00 cfs)

Secondary OutFlow Max=0.00 cfs @ 2.00 hrs HW=245.00' TW=234.00' (Dynamic Tailwater) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 2P: forbay

Inflow Area =	18.714 ac, Inflow Depth = 1.18"	for Q-1 event
Inflow =	38.18 cfs @ 11.94 hrs, Volume=	1.841 af
Outflow =	22.33 cfs @ 12.02 hrs, Volume=	1.841 af, Atten= 42%, Lag= 4.7 min
Primary =	22.33 cfs @ 12.02 hrs, Volume=	1.841 af
Secondary =	0.00 cfs @ 2.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Starting Elev= 264.00' Surf.Area= 2,724 sf Storage= 6,078 cf Peak Elev= 266.18' @ 12.02 hrs Surf.Area= 6,668 sf Storage= 17,898 cf (11,820 cf above start) Plug-Flow detention time= 65.7 min calculated for 1.701 af (92% of inflow) Center-of-Mass det. time= 6.8 min (818.0 - 811.2)

Volume	Invert	Avail.	Storage	Storage	e Description			
#1	260.00'	75	5,303 cf	Custor	n Stage Data (Pris	smatic)Listed	below (Recald	c)
Elevatio	n Si	urf.Area	Inc	Store	Cum.Store			
(fee		(sq-ft)		c-feet)	(cubic-feet)			
260.0		592	(00.01	0	0			
262.0		1,381		1,973	1,973			
264.0	00	2,724		4,105	6,078			
264.5		5,101		1,956	8,034			
266.0		6,486		8,690	16,725			
268.0		8,531		5,017	31,742			
270.0		10,837		9,368	51,110			
272.0	00	13,356	2	24,193	75,303			
Device	Routing	Invert	Outlet [Devices				
#1	Primary	260.00'	24.0" >	: 105.0' I	ong Culvert CPP	, square edge	headwall, Ke	e= 0.500
			Outlet I	nvert= 2	55.00' S= 0.0476	'/' Cc= 0.900		
			n= 0.01	3 Corru	gated PE, smooth	interior		
#2	Device 1	264.00'	-		ifice/Grate Limite			
#3	Secondary	270.50')' breadth Broad-			
			· ·	,	0 0.40 0.60 0.80			
			Coet. (E	nglish)	2.68 2.70 2.70 2	2.64 2.63 2.64	4 2.64 2.63	
Primary OutFlow Max=22.32 cfs @ 12.02 hrs HW=266.18' TW=246.43' (Dynamic Tailwater)								

Controls Controls Controls

Secondary OutFlow Max=0.00 cfs @ 2.00 hrs HW=264.00' TW=245.00' (Dynamic Tailwater) -3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond CB41:

Inflow Area =	1.810 ac, Inflow Depth = 1.49 "	for Q-1 event
Inflow =	4.80 cfs @ 11.96 hrs, Volume=	0.225 af
Outflow =	4.80 cfs @ 11.96 hrs, Volume=	0.225 af, Atten= 0%, Lag= 0.0 min
Primary =	4.80 cfs @ 11.96 hrs, Volume=	0.225 af

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs

Peak Elev= 305.81' @ 11.96 hrs Flood Elev= 309.90' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (797.5 - 797.5)

Device	Routing	Invert	Outlet Devices
#1	Primary	304.73'	18.0" x 270.0' long line to DMH 5 CPP, square edge headwall, Ke= 0.500 Outlet Invert= $301.90'$ S= 0.0105 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior
Primary			s @ 11.96 hrs HW=305.80' TW=303.14' (Dynamic Tailwater)

1=line to DMH 5 (Inlet Controls 4.76 cfs @ 3.5 fps)

Pond CB62:

Inflow Area =	13.351 ac, Inflow Depth = 1.26"	for Q-1 event
Inflow =	28.57 cfs @ 11.95 hrs, Volume=	1.403 af
Outflow =	28.57 cfs @ 11.95 hrs, Volume=	1.403 af, Atten= 0%, Lag= 0.0 min
Primary =	28.57 cfs @ 11.95 hrs, Volume=	1.403 af

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 300.73' @ 11.95 hrs Flood Elev= 309.50' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Device	Routing	Invert	Outlet Devices
#1	Primary	297.90'	36.0" x 260.0' long line to CB 64 CPP, square edge headwall, Ke= 0.500 Outlet Invert= 296.87' S= 0.0040 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior

Primary OutFlow Max=27.97 cfs @ 11.95 hrs HW=300.70' TW=299.40' (Dynamic Tailwater) ↓ 1=line to CB 64 (Outlet Controls 27.97 cfs @ 5.3 fps)

Pond CB64:

outhon	ea = = = =	34.54 cfs @ 34.54 cfs @	Inflow Depth = 1.27 11.94 hrs, Volume 11.94 hrs, Volume 11.94 hrs, Volume	= 1.666 af = 1.666 af,	Atten= 0%, Lag= 0.0 min		
Peak Elev Flood Ele Plug-Flow	Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 299.41' @ 11.94 hrs Flood Elev= 309.50' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)						
Device	Routing	Invert	Outlet Devices				

#	1	Primary	296.82'	42.0" x 360.0' long storm line to CB 78
	•			

severance proposed SN 001 Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

CPP, square edge headwall, Ke= 0.500 Outlet Invert= 295.35' S= 0.0041 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior

Primary OutFlow Max=34.34 cfs @ 11.94 hrs HW=299.41' TW=297.02' (Dynamic Tailwater) 1=storm line to CB 78 (Barrel Controls 34.34 cfs @ 6.3 fps)

Pond CB79: line to pond

Inflow Area	=	17.128 ac, Inflow Depth = 1.27'	" for Q-1 event
Inflow	=	37.90 cfs @ 11.94 hrs, Volume=	= 1.814 af
Outflow	=	37.90 cfs @ 11.94 hrs, Volume=	= 1.814 af, Atten= 0%, Lag= 0.0 min
Primary	=	37.90 cfs @ 11.94 hrs, Volume=	= 1.814 af

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 297.03' @ 11.94 hrs Flood Elev= 310.50' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Device Routing Invert Outlet Devices	
#1 Primary 294.60' 42.0'' x 115.0' long line to pond CPP, square edge headwall, Ke= 0.500 Outlet Invert= 271.60' S= 0.2000 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior	

Primary OutFlow Max=37.81 cfs @ 11.94 hrs HW=297.03' TW=265.71' (Dynamic Tailwater) **1=line to pond** (Inlet Controls 37.81 cfs @ 5.3 fps)

Pond DMH 5:

Inflow Area	a =	2.753 ac, li	nflow Depth	= 1.46"	for Q-1 event	
Inflow	=	6.96 cfs @	11.96 hrs,	Volume=	0.335 af	
Outflow	=	6.96 cfs @	11.96 hrs,	Volume=	0.335 af,	Atten= 0%, Lag= 0.0 min
Primary	=	6.96 cfs @	11.96 hrs,	Volume=	0.335 af	-

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 303.29' @ 11.98 hrs Flood Elev= 312.00' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (800.2 - 800.2)

Device	Routing	Invert	Outlet Devices
	Primary		20.0" x 142.0' long Storm line to DMH 4 CPP, square edge headwall, Ke= 0.500 Outlet Invert= 300.61' S= 0.0041 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior

Primary OutFlow Max=5.92 cfs @ 11.96 hrs HW=303.19' TW=302.77' (Dynamic Tailwater) **1=Storm line to DMH 4** (Outlet Controls 5.92 cfs @ 2.9 fps)

Pond DMH1:

Inflow Area =	2.937 ac, Inflow Depth = 1.22"	for Q-1 event				
Inflow =	6.36 cfs @ 11.93 hrs, Volume=	0.298 af				
Outflow =	6.36 cfs @ 11.93 hrs, Volume=	0.298 af, Atten= 0%, Lag= 0.0 min				
Primary =	6.36 cfs @ 11.93 hrs, Volume=	0.298 af				
Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 306.97' @ 11.93 hrs Flood Elev= 312.64' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (798.5 - 798.5)						

Device	Routing	Invert	Outlet Devices
<u></u> #1	Primary		20.0" x 251.0' long line to DMH 2 CPP, square edge headwall, Ke= 0.500 Outlet Invert= 299.63' S= 0.0244 '/' Cc= 0.900
			n= 0.013 Corrugated PE, smooth interior

Primary OutFlow Max=6.28 cfs @ 11.93 hrs HW=306.96' TW=302.08' (Dynamic Tailwater) 1=line to DMH 2 (Inlet Controls 6.28 cfs @ 3.7 fps)

Pond DMH2:

Inflow Area	a =	12.038 ac, Inflow Depth = 1.25"	' for Q-1 event	
Inflow	=	25.37 cfs @ 11.95 hrs, Volume=	= 1.258 af	
Outflow	=	25.37 cfs @ 11.95 hrs, Volume=	= 1.258 af, Atten= 0%, Lag= 0.0 mir	n
Primary	=	25.37 cfs @ 11.95 hrs, Volume=	= 1.258 af	

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 302.22' @ 11.96 hrs Flood Elev= 313.20' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Device	Routing	Invert	Outlet Devices
#1	Primary	299.53'	36.0" x 432.0' long storm line to CB 62 CPP, square edge headwall, Ke= 0.500 Outlet Invert= 297.95' S= 0.0037 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior

Primary OutFlow Max=24.32 cfs @ 11.95 hrs HW=302.19' TW=300.70' (Dynamic Tailwater) 1=storm line to CB 62 (Outlet Controls 24.32 cfs @ 4.9 fps)

Pond DMH3:

Inflow Area =	1.645 ac, Inflow Depth = 1.33 "	for Q-1 event
Inflow =	4.15 cfs @ 11.94 hrs, Volume=	0.182 af
Outflow =	4.15 cfs @ 11.94 hrs, Volume=	0.182 af, Atten= 0%, Lag= 0.0 min
Primary =	4.15 cfs @ 11.94 hrs, Volume=	0.182 af

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 303.10' @ 11.95 hrs Flood Elev= 311.60' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Device	Routing	Invert	Outlet Devices
#1	Primary	301.60'	18.0" x 425.0' long storm line to DMH 2 CPP, square edge headwall, Ke= 0.500 Outlet Invert= 299.63' S= 0.0046 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior

Primary OutFlow Max=3.85 cfs @ 11.94 hrs HW=303.07' TW=302.18' (Dynamic Tailwater) 1=storm line to DMH 2 (Outlet Controls 3.85 cfs @ 2.8 fps)

Pond DMH4:

Inflow Area = Inflow = Outflow = Primary =	4.491 ac, Inflow Depth = 1.33" for Q-1 event 0.86 cfs @ 11.97 hrs, Volume= 0.496 af 0.86 cfs @ 11.97 hrs, Volume= 0.496 af, Atten= 0%, Lag= 0.0 m 0.86 cfs @ 11.97 hrs, Volume= 0.496 af	nin					
Peak Elev= 302.82 Flood Elev= 313.2 Plug-Flow detention	Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 302.82' @ 11.97 hrs Flood Elev= 313.20' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (809.3 - 809.3)						
Device Routing	Invert Outlet Devices						

#1 Primary 300.36' **24.0" x 210.0' long line to DMH 2** CPP, square edge headwall, Ke= 0.500 Outlet Invert= 299.63' S= 0.0035 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior

Primary OutFlow Max=9.89 cfs @ 11.97 hrs HW=302.79' TW=302.19' (Dynamic Tailwater) 1=line to DMH 2 (Outlet Controls 9.89 cfs @ 3.3 fps)

severance proposed SN 001					
Prepared by Civil Engineering Associates					
HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC					

Time span=2.00-72.00 hrs, dt=0.02 hrs, 3501 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 2:	Flow Length=505'	Runoff Area=1.522 ac Runoff Depth=2.45" Tc=2.8 min CN=93 Runoff=6.88 cfs 0.310 af
Subcatchment 3:	Flow Length=479'	Runoff Area=1.276 ac Runoff Depth=1.40" Tc=5.0 min CN=80 Runoff=3.32 cfs 0.149 af
Subcatchment 4:	Flow Length=415'	Runoff Area=1.661 ac Runoff Depth=2.75" Tc=2.0 min CN=96 Runoff=8.21 cfs 0.381 af
Subcatchment 5:	Flow Length=370'	Runoff Area=0.638 ac Runoff Depth=2.35" Tc=3.6 min CN=92 Runoff=2.74 cfs 0.125 af
Subcatchment 6:	Flow Length=144'	Runoff Area=1.007 ac Runoff Depth=2.35" Tc=3.3 min CN=92 Runoff=4.37 cfs 0.197 af
Subcatchment 7:	Flow Length=316'	Runoff Area=1.715 ac Runoff Depth=2.08" Tc=3.4 min CN=89 Runoff=6.76 cfs 0.297 af
Subcatchment 8:	Flow Length=74'	Runoff Area=1.250 ac Runoff Depth=2.17" Tc=8.4 min CN=90 Runoff=4.30 cfs 0.226 af
Subcatchment 9:	Flow Length=109'	Runoff Area=0.664 ac Runoff Depth=2.26" Tc=4.2 min CN=91 Runoff=2.71 cfs 0.125 af
Subcatchment 10:	Flow Length=140'	Runoff Area=0.916 ac Runoff Depth=2.08" Tc=2.1 min CN=89 Runoff=3.75 cfs 0.159 af
Subcatchment 11:	Flow Length=393'	Runoff Area=0.649 ac Runoff Depth=2.45" Tc=4.5 min CN=93 Runoff=2.78 cfs 0.132 af
Subcatchment 12:	Flow Length=481'	Runoff Area=1.738 ac Runoff Depth=2.08" Tc=8.4 min CN=89 Runoff=5.78 cfs 0.301 af
Subcatchment 13:	Flow Length=220'	Runoff Area=1.810 ac Runoff Depth=2.54" Tc=4.7 min CN=94 Runoff=7.91 cfs 0.384 af
Subcatchment 14:	Flow Length=510'	Runoff Area=0.943 ac Runoff Depth=2.45" Tc=6.7 min CN=93 Runoff=3.76 cfs 0.192 af
Subcatchment 15:	Flow Length=350'	Runoff Area=1.339 ac Runoff Depth=2.35" Tc=2.2 min CN=92 Runoff=5.98 cfs 0.262 af
Subcatchment 16: forbay area	Flow Length=100'	Runoff Area=1.586 ac Runoff Depth=0.69" Tc=4.3 min CN=67 Runoff=1.95 cfs 0.091 af

severance proposed SN 001 Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

Subcatchment 17: pond area	Runoff Area=2.458 ac Runoff Depth=0.60" Flow Length=77' Tc=3.1 min CN=65 Runoff=2.69 cfs 0.123 af
Subcatchment A: post-dev	Runoff Area=447,647 sf Runoff Depth=0.34" Flow Length=1,230' Tc=23.2 min CN=58 Runoff=1.87 cfs 0.292 af
Subcatchment B: post-dev	Runoff Area=641,086 sf Runoff Depth=0.25" Flow Length=1,580' Tc=22.7 min CN=55 Runoff=1.43 cfs 0.308 af
Subcatchment C: post-dev	Runoff Area=1,527,401 sf Runoff Depth=0.11" Flow Length=990' Tc=20.9 min CN=49 Runoff=0.51 cfs 0.317 af
Subcatchment D:	Runoff Area=239,147 sf Runoff Depth=0.13" Flow Length=385' Tc=12.2 min CN=50 Runoff=0.12 cfs 0.059 af
Subcatchment E: western side of rte	7 Runoff Area=314,587 sf Runoff Depth=0.44" Flow Length=1,220' Tc=10.0 min CN=61 Runoff=3.65 cfs 0.267 af
Reach 1R: stream reach n=0.045	Peak Depth=0.41' Max Vel=2.8 fps Inflow=4.03 cfs 0.951 af L=330.0' S=0.0300 '/' Capacity=17.80 cfs Outflow=3.91 cfs 0.951 af
Reach 2R: stream reach	Peak Depth=0.15' Max Vel=1.6 fps Inflow=0.51 cfs 0.317 af L=1,750.0' S=0.0340 '/' Capacity=6.48 cfs Outflow=0.49 cfs 0.317 af
Reach 3R: ex. roadside ditch n=0.030	Peak Depth=0.45' Max Vel=6.4 fps Inflow=8.39 cfs 3.739 af L=470.0' S=0.0745 '/' Capacity=91.77 cfs Outflow=8.37 cfs 3.739 af
Reach 4R: (S/N 001) 4' culvert under r D=48.0" n=0.030 L	
Reach sl: stone lined channel n=0.040 L	Peak Depth=0.30' Max Vel=5.3 fps Inflow=7.41 cfs 3.447 af =365.0' S=0.1205 '/' Capacity=133.67 cfs Outflow=7.40 cfs 3.447 af
Pond 1P: pond main pool Primary=7.41	Peak Elev=249.26' Storage=120,442 cf Inflow=32.62 cfs 3.455 af cfs 3.447 af Secondary=0.00 cfs 0.000 af Outflow=7.41 cfs 3.447 af
Pond 2P: forbay Primary=31.16 c	Peak Elev=268.24' Storage=33,862 cf Inflow=67.74 cfs 3.332 af fs 3.332 af Secondary=0.00 cfs 0.000 af Outflow=31.16 cfs 3.332 af
Pond CB41:	Peak Elev=310.04' Inflow=7.91 cfs 0.384 af 18.0" x 270.0' Culvert Outflow=7.91 cfs 0.384 af
Pond CB62:	Peak Elev=303.25' Inflow=49.92 cfs 2.510 af 36.0" x 260.0' Culvert Outflow=49.92 cfs 2.510 af
Pond CB64:	Peak Elev=300.70' Inflow=60.18 cfs 2.979 af 42.0" x 360.0' Culvert Outflow=60.18 cfs 2.979 af
Pond CB79: line to pond	Peak Elev=298.38' Inflow=65.93 cfs 3.241 af 42.0" x 115.0' Culvert Outflow=65.93 cfs 3.241 af

severance proposed SN 001 Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software So	Type II 24-hr Q-10 Rainfall=3.20" Page 25 Page 25 plutions LLC 1/9/2007
Pond DMH 5:	Peak Elev=308.97' Inflow=11.56 cfs 0.576 af 20.0" x 142.0' Culvert Outflow=11.56 cfs 0.576 af
Pond DMH1:	Peak Elev=307.70' Inflow=11.07 cfs 0.530 af 20.0" x 251.0' Culvert Outflow=11.07 cfs 0.530 af
Pond DMH2:	Peak Elev=305.89' Inflow=44.44 cfs 2.253 af 36.0" x 432.0' Culvert Outflow=44.44 cfs 2.253 af
Pond DMH3:	Peak Elev=307.56' Inflow=7.10 cfs 0.322 af 18.0" x 425.0' Culvert Outflow=7.10 cfs 0.322 af
Pond DMH4:	Peak Elev=307.71' Inflow=16.94 cfs 0.877 af 24.0" x 210.0' Culvert Outflow=16.94 cfs 0.877 af

Total Runoff Area = 93.942 ac Runoff Volume = 4.698 af Average Runoff Depth = 0.60"

Subcatchment 2:

Runoff = 6.88 cfs @ 11.93 hrs, Volume= 0.310 af, Depth= 2.45"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-10 Rainfall=3.20"

Area	(ac) C	N Desc	cription		
1.	186 9		ed parking		
0.	.336 7	′4 >75°	% Grass co	over, Good,	, HSG C
1.	.522 9	93 Weig	ghted Aver	age	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
1.2	<u>(1881)</u> 75	0.0160	<u>(103ec)</u> 1.0	(015)	Shoot Flow, flow off norking lot
1.2	75	0.0100	1.0		Sheet Flow, flow off parking lot Smooth surfaces n= 0.011 P2= 2.30"
1.2	300	0.0060	4.1	5.00	
					Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31'
0.4	130	0.0070	5.3	11.64	n= 0.013 Corrugated PE, smooth interior Circular Channel (pipe), flow to CB 65
0.4	100	0.0070	0.0	11.04	Diam= 20.0" Area= 2.2 sf Perim= 5.2' r= 0.42'
					n= 0.013 Corrugated PE, smooth interior
2.8	505	Total			

Subcatchment 3:

Runoff = 3.32 cfs @ 11.96 hrs, Volume= 0.149 af, Depth= 1.40"

Area	(ac) C	N Desc	cription				
-			ed parking % Grass co	& roofs over, Good	. HSG B		
1.	1.276 80 Weighted Average						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
3.2	35	0.0600	0.2		Sheet Flow, flow to YD Grass: Short n= 0.150 P2= 2.30"		
1.3	300	0.0074	3.9	3.06	Circular Channel (pipe), Diam= 12.0" Area= 0.8 sf Perim= 3.1' r= 0.25'		
0.5	144	0.0080	4.7	5.78	n= 0.013 Corrugated PE, smooth interior Circular Channel (pipe), line to DMH 1 Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31' n= 0.013 Corrugated PE, smooth interior		
5.0	479	Total			· · ·		

Subcatchment 4:

Runoff	=	8.21 cfs @	11.92 hrs, \	Volume=	0.381 af, Depth= 2.75	
--------	---	------------	--------------	---------	-----------------------	--

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-10 Rainfall=3.20"

Area	(ac) C	N Desc	cription						
	1.523 98 Paved parking & roofs								
0.138 74 >75% Grass cover, Good, HSG C									
1.	1.661 96 Weighted Average								
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
0.7	50	0.0300	1.2		Sheet Flow, flow off parking lot				
1.3	365	0.0085	4.9	5.96	Smooth surfaces n= 0.011 P2= 2.30" Circular Channel (pipe), flow to DMH 1				
1.5	303	0.0005	4.3	5.90	Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31'				
					n= 0.013 Corrugated PE, smooth interior				
2.0	415	Total							
				O h a					
				Subc	catchment 5:				
Runoff	=	2.74 cfs	s@ 11.9	4 hrs. Volu	me= 0.125 af, Depth= 2.35"				
			•	-					
				CS, Time S	Span= 2.00-72.00 hrs, dt= 0.02 hrs				
Type II 2	:4-nr Q- 1	0 Rainfal	=3.20						
Area	(ac) C	N Desc	cription						
			ed parking						
				over, Good,	HSG C				
0.	.638 9	92 Weig	ghted Aver	age					
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	2				
2.3	30	0.1000	0.2		Sheet Flow, flow off lawn				
0.0	1 4 0	0.0040	0.0		Grass: Short n= 0.150 P2= 2.30"				
0.8	140	0.0210	2.9		Shallow Concentrated Flow, flow along curb Paved Kv= 20.3 fps				
0.5	200	0.0180	7.1	8.67	Circular Channel (pipe), flow in storm line				
					Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31'				
					n= 0.013 Corrugated PE, smooth interior				
3.6	370	Total							

Subcatchment 6:

Runoff	=	4.37 cfs @	11.94 hrs, Volume=	0.197 af, Depth= 2.35"
--------	---	------------	--------------------	------------------------

Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

Area	(ac) C	N Desc	cription						
			ed parking						
	0.262 74 >75% Grass cover, Good, HSG C 1.007 92 Weighted Average								
_				0					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
2.7	30	0.0670	0.2	(0.0)	Sheet Flow, flow off grass				
0.1	20	0.0120	2.2		Grass: Short n= 0.150 P2= 2.30" Shallow Concentrated Flow, flow along curb Paved Kv= 20.3 fps				
0.5	94	0.0040	3.3	4.09	Circular Channel (pipe), flow in storm line Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31' n= 0.013 Corrugated PE, smooth interior				
3.3	144	Total							
				•					
				Subo	catchment 7:				
Runoff	=	6.76 cfs	s@ 11.94	4 hrs, Volu	me= 0.297 af, Depth= 2.08"				
		R-20 meth) Rainfal		CS, Time S	Span= 2.00-72.00 hrs, dt= 0.02 hrs				
Area	(ac) C	N Desc	cription						
1.	.045 9	8 Pave	ed parking						
			<u>% Grass co</u> ghted Aver	over, Good	, HSG C				
1.	.715 0		gilleu Avei	aye					
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
2.5	25	0.0600	0.2	(/ /	Sheet Flow, flow to YD				
0.6	115	0.0050	3.2	2.52	Grass: Short n= 0.150 P2= 2.30" Circular Channel (pipe),				
0.0	115	0.0050	5.2	2.52	Diam= 12.0" Area= 0.8 sf Perim= 3.1' r= 0.25'				
0.1	110	0.0850	13.2	10 30	n= 0.013 Corrugated PE, smooth interior Circular Channel (pipe),				
0.1	110	0.0000	13.2	10.59	Diam= 12.0" Area= 0.8 sf Perim= 3.1' r= 0.25'				
0.2	66	0.0060	4.9	10.78	n= 0.013 Corrugated PE, smooth interior Circular Channel (pipe), line to DMH 2				
0.2	00	0.0000	4.9	10.70	Diam= 20.0" Area= 2.2 sf Perim= 5.2' r= 0.42'				
3.4	316	Total			n= 0.013 Corrugated PE, smooth interior				
0.4	510	i Ulai							

Subcatchment 8:

Runoff = 4.30 cfs @ 12.00 hrs, Volume= 0.226 af, Depth= 2.17"

severance proposed SN 001

Type II 24-hr Q-10 Rainfall=3.20" Page 29 1/9/2007

Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

Area	(ac) C	N Desc	cription						
0.	0.822 98 Paved parking & roofs								
0.	0.428 74 >75% Grass cover, Good, HSG C								
1.	1.250 90 Weighted Average								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
6.4	60	0.0310	0.2	<u> </u>	Sheet Flow,				
					Grass: Short n= 0.150 P2= 2.30"				
0.2	8	0.0200	0.7		Sheet Flow, flow across sidewalk				
1.8	6	0.0200	0.1		Smooth surfaces n= 0.011 P2= 2.30" Sheet Flow, flow to street CB 52 Grass: Dense n= 0.240 P2= 2.30"				
8.4	74	Total							
	Subcatchment 9:								

Runoff = 2.71 cfs @ 11.95 hrs, Volume= 0.125 af, Depth= 2.26"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-10 Rainfall=3.20"

Area	(ac) C	N Desc	cription						
-			ed parking						
	0.182 74 >75% Grass cover, Good, HSG C 0.664 91 Weighted Average								
0	.004 8	91 Weig	gnied Aver	age					
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	-				
2.0	18	0.0500	0.1		Sheet Flow,				
					Grass: Short n= 0.150 P2= 2.30"				
0.2	8	0.0300	0.8		Sheet Flow,				
					Smooth surfaces n= 0.011 P2= 2.30"				
1.5	8	0.0200	0.1		Sheet Flow,				
					Grass: Short n= 0.150 P2= 2.30"				
0.5	75	0.0180	2.7		Shallow Concentrated Flow, flow along curb to CB 62				
					Paved Kv= 20.3 fps				
4.2	109	Total							

Subcatchment 10:

Runoff = 3.75 cfs @ 11.92 hrs, Volume= 0.159 af, Depth= 2.08"

 Area (ac)	CN	Description
 0.564	98	Paved parking & roofs
 0.352	74	>75% Grass cover, Good, HSG C
0.916	89	Weighted Average

_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	1.2	18	0.2000	0.3		Sheet Flow,
	0.8	90	0.0160	1.9		Grass: Short n= 0.150 P2= 2.30" Shallow Concentrated Flow, roadside swale
	0.4	00	0.0450	0.4	7.04	Grassed Waterway Kv= 15.0 fps
	0.1	32	0.0150	6.4	7.91	Circular Channel (pipe), flow to CB 76 Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31'
_						n= 0.013 Corrugated PE, smooth interior
	2.1	140	Total			

Subcatchment 11:

Runoff = 2.78 cfs @ 11.95 hrs, Volume= 0.132 af, Depth= 2.45"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-10 Rainfall=3.20"

Area	(ac) C	N Desc	cription								
0.	510 9	8 Pave	ed parking	& roofs							
0.	0.139 74 >75% Grass cover, Good, HSG C										
0.	0.649 93 Weighted Average										
Tc	Length	Slope	Velocity	Capacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
2.9	25	0.0400	0.1		Sheet Flow,						
					Grass: Short n= 0.150 P2= 2.30"						
1.1	65	0.0180	1.0		Sheet Flow, flow across lot						
					Smooth surfaces n= 0.011 P2= 2.30"						
0.3	195	0.0380	10.3	12.59	Circular Channel (pipe), flow in line to DMH 6						
					Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31'						
					n= 0.013 Corrugated PE, smooth interior						
0.2	108	0.0190	8.2	14.48	Circular Channel (pipe), line to CB 62						
					Diam= 18.0" Area= 1.8 sf Perim= 4.7' r= 0.38'						
					n= 0.013 Corrugated PE, smooth interior						
4.5	393	Total									

Subcatchment 12:

Runoff = 5.78 cfs @ 12.00 hrs, Volume= 0.301 af, Depth= 2.08"

 Area (ac)	CN	Description
1.061	98	Paved parking & roofs
 0.677	74	>75% Grass cover, Good, HSG C
1.738	89	Weighted Average

severance proposed SN 001

Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	7.0	75	0.0400	0.2		Sheet Flow, flow to YD Grass: Short n= 0.150 P2= 2.30"
	0.2	36	0.0060	3.5	2.76	Circular Channel (pipe), flow in YD line Diam= 12.0" Area= 0.8 sf Perim= 3.1' r= 0.25' n= 0.013 Corrugated PE, smooth interior
_	1.2	370	0.0090	5.0	6.13	Circular Channel (pipe), flow to DMH 4 Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31' n= 0.013 Corrugated PE, smooth interior

8.4 481 Total

Subcatchment 13:

Runoff = 7.91 cfs @ 11.95 hrs, Volume= 0.384 af, Depth= 2.54"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-10 Rainfall=3.20"

Area	(ac) C	N Dese	cription						
1.	1.546 98 Paved parking & roofs								
0.	0.264 74 >75% Grass cover, Good, HSG C								
1.	1.810 94 Weighted Average								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description				
3.6	30	0.0330	0.1		Sheet Flow, flow off lawn				
1.1	190	0.0200	2.9		Grass: Short n= 0.150 P2= 2.30" Shallow Concentrated Flow, flow along curb Paved Kv= 20.3 fps				
4.7	220	Total							

Subcatchment 14:

Runoff = 3.76 cfs @ 11.98 hrs, Volume= 0.192 af, Depth= 2.45"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-10 Rainfall=3.20"

 Area (ac)	CN	Description
 0.765	98	Paved parking & roofs
 0.178	74	>75% Grass cover, Good, HSG C
0.943	93	Weighted Average

Type II 24-hr Q-10 Rainfall=3.20" Page 31 1/9/2007

severance proposed SN 001

Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	4.3	35	0.0290	0.1		Sheet Flow, flow off lawn
						Grass: Short n= 0.150 P2= 2.30"
	0.4	80	0.0250	3.2		Shallow Concentrated Flow, flow along curb
						Paved Kv= 20.3 fps
	2.0	395	0.0040	3.3	4.09	Circular Channel (pipe), flow in pipe to DMH 5
						Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31'
						n= 0.013 Corrugated PE, smooth interior
_						

6.7 510 Total

Subcatchment 15:

Runoff = 5.98 cfs @ 11.92 hrs, Volume= 0.262 af, Depth= 2.35"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-10 Rainfall=3.20"

Area	(ac) C	N Desc	cription					
			ed parking		HSG C			
0.328 74 >75% Grass cover, Good, HSG C 1.339 92 Weighted Average								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
1.3	90	0.0200	1.1		Sheet Flow, flow across parking lot Smooth surfaces n= 0.011 P2= 2.30"			
0.8	150	0.0220	3.0		Shallow Concentrated Flow,			
0.1	110	0.0800	14.9	18.27	Paved Kv= 20.3 fps Circular Channel (pipe), line to CB 79 Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31' n= 0.013 Corrugated PE, smooth interior			
2.2	350	Total						

Subcatchment 16: forbay area

Runoff = 1.95 cfs @ 11.96 hrs, Volume= 0.091 af, Depth= 0.69"

Are	ea (ac)	CN	Description
	0.094	98	Paved parking & roofs
	0.103	85	Gravel roads, HSG B
	0.386	78	Meadow, non-grazed, HSG D
	1.003	58	Meadow, non-grazed, HSG B
	1.586	67	Weighted Average

severance proposed SN 001	<i>Type II 24-hr</i> Q-10 <i>Rainfall=3.20"</i> Page 33							
Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD								
Tc Length Slope Velocity Capac (min) (feet) (ft/ft) (ft/sec) (c								
4.3 100 0.2360 0.4	Sheet Flow, flow from pond bank							
	Grass: Short n= 0.150 P2= 2.30"							
Subcate	chment 17: pond area							
Runoff = 2.69 cfs @ 11.95 hrs, V	'olume= 0.123 af, Depth= 0.60"							
Runoff by SCS TR-20 method, UH=SCS, Tin Type II 24-hr Q-10 Rainfall=3.20"	Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-10 Rainfall=3.20"							
Area (ac) CN Description								
0.562 55 Woods, Good, HSG B 0.298 58 Meadow, non-grazed,	HSG B							
0.289 98 pond water surface								
1.199 61 >75% Grass cover, Go 0.110 89 Gravel roads, HSG C	iod, HSG B							
2.458 65 Weighted Average								
	ity Description fs)							
<u>3.1</u> 77 0.3300 0.4	Sheet Flow, flow on pond bank Grass: Short n= 0.150 P2= 2.30"							
Subca	tchment A: post-dev							
Runoff = 1.87 cfs @ 12.24 hrs, V	olume= 0.292 af, Depth= 0.34"							
Runoff by SCS TR-20 method, UH=SCS, Tin Type II 24-hr Q-10 Rainfall=3.20"	ie Span= 2.00-72.00 hrs, dt= 0.02 hrs							
Area (sf) CN Description								
23,840 98 ex road								
27,667 48 Brush, Good, HSG 29,865 77 Woods, Good, HSG								
<u>366,275 55 Woods, Good, HSC</u>	; В							
447,647 58 Weighted Average								
Tc Length Slope Velocity Capac (min) (feet) (ft/ft) (ft/sec) (c								
19.0 150 0.0130 0.1	Sheet Flow, Grass: Short n= 0.150 P2= 2.30"							
2.8 340 0.1600 2.0	Shallow Concentrated Flow,							
1.4 740 0.1000 8.9 24.	Woodland Kv= 5.0 fps 00 Trap/Vee/Rect Channel Flow,							
	Bot.W=2.00' D=0.67' Z= 3.0 '/' Top.W=6.02'							
23.2 1,230 Total	n= 0.030 Earth, grassed & winding							
20.2 1,200 10101								

Subcatchment B: post-dev

Runoff = 1.43 cfs @ 12.27 hrs, Volume= 0.308 af, Depth= 0.25"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-10 Rainfall=3.20"

_	A	rea (sf)	CN	Description		
	6	41,086	55	Woods, Go	od, HSG B	
	Tc (min)	Length (feet)	Slope (ft/ft	-	Capacity (cfs)	Description
	15.2	100	0.010	0.1		Sheet Flow,
	1.4	125	0.010	0 1.5		Grass: Short n= 0.150 P2= 2.30" Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps
	1.0	155	0.290	0 2.7		Shallow Concentrated Flow,
	1.8	400	0.100	0 3.7	2.44	Woodland Kv= 5.0 fps Trap/Vee/Rect Channel Flow,
				• •		Bot.W=1.00' D=0.33' Z= 3.0 '/' Top.W=2.98'
_	3.3	800	0.0470	0 4.0	6.05	n= 0.045 Winding stream, pools & shoals Trap/Vee/Rect Channel Flow, Bot.W=2.00' D=0.50' Z= 2.0 '/' Top.W=4.00' n= 0.040 Winding stream, pools & shoals
_	22.7	1 580	Total			

22.7 1,580 Total

Subcatchment C: post-dev

Runoff = 0.51 cfs @ 12.98 hrs, Volume= 0.317 af, Depth= 0.11"

Area (sf)	CN	Description
22,400	98	ex road and bikepath
40,990	98	ex houses and drives
165,352	70	Woods, Good, HSG C
517,000	30	Woods, Good, HSG A
43,081	39	>75% Grass cover, Good, HSG A
738,578	55	Woods, Good, HSG B
1,527,401	49	Weighted Average

severance proposed SN 001

Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
14.3	100	0.0150	0.1		Sheet Flow,
					Cultivated: Residue>20% n= 0.170 P2= 2.30"
2.4	160	0.0150	1.1		Shallow Concentrated Flow,
					Cultivated Straight Rows Kv= 9.0 fps
1.2	180	0.2670	2.6		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
3.0	550	0.0330	3.1	3.08	Trap/Vee/Rect Channel Flow,
					Bot.W=1.00' D=0.50' Z= 2.0 '/' Top.W=3.00'
					n= 0.040 Winding stream, pools & shoals

20.9 990 Total

Subcatchment D:

Runoff	_	0 12 of a	10 16 hrs	Valuma	0.050 of	Donth	0 1 2"
RUHUH	-	0.12 cfs @	12.401115,	volume-	0.059 af,	Depin-	0.15

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-10 Rainfall=3.20"

_	A	rea (sf)	CN	Description		
		7,500	98	ex road		
		68,267		Woods, Go		
_		63,380	30	Woods, Go	od, HSG A	
	2	39,147	50	Weighted A	verage	
_	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
	10.7	120	0.2500	0.2		Sheet Flow,
_	1.5	265	0.3400) 2.9		Woods: Light underbrush n= 0.400 P2= 2.30" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
	12.2	385	Total			

Subcatchment E: western side of rte 7

Runoff = 3.65 cfs @ 12.05 hrs, Volume= 0.267 af, Depth= 0.44"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-10 Rainfall=3.20"

 Area (sf)	CN	Description
23,840	98	ex pavement
 290,747	58	Woods/grass comb., Good, HSG B
 314,587	61	Weighted Average

Type II 24-hr Q-10 Rainfall=3.20" Page 35

1/9/2007

severance proposed SN 001

Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.7	70	0.4000	0.2		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 2.30"
0.9	175	0.4000	3.2		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
1.7	800	0.1000	7.6	11.96	
					Bot.W=1.00' D=0.67' Z= 2.0 '/' Top.W=3.68'
					n= 0.033 Earth, grassed & winding
0.7	175	0.0200	4.4	13.86	Circular Channel (pipe), ex culvert under rd
					Diam= 24.0" Area= 3.1 sf Perim= 6.3' r= 0.50'
					n= 0.030 Corrugated metal

1.0

10.0 1,220 Total

Reach 1R: stream reach

Direct Entry, outlet conditions

Inflow Area	=	62.494 ac, Inflow Depth = 0.18'	" for Q-10 event
Inflow =	=	4.03 cfs @ 12.06 hrs, Volume=	= 0.951 af
Outflow =	=	3.91 cfs @ 12.08 hrs, Volume=	= 0.951 af, Atten= 3%, Lag= 1.5 min

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Max. Velocity= 2.8 fps, Min. Travel Time= 2.0 min Avg. Velocity = 0.9 fps, Avg. Travel Time= 6.0 min

Peak Depth= 0.41' @ 12.08 hrs Capacity at bank full= 17.80 cfs 3.00' x 1.00' deep channel, n= 0.045 Winding stream, pools & shoals Side Slope Z-value= 1.0 '/' Top Width= 5.00' Length= 330.0' Slope= 0.0300 '/'

Reach 2R: stream reach

Inflow Area =	35.064 ac,	Inflow Depth = 0.11"	for Q-10 event	
Inflow =	0.51 cfs @	2 12.98 hrs, Volume=	0.317 af	
Outflow =	0.49 cfs @	13.32 hrs, Volume=	0.317 af,	Atten= 3%, Lag= 20.1 min

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Max. Velocity= 1.6 fps, Min. Travel Time= 18.6 min Avg. Velocity = 0.7 fps, Avg. Travel Time= 39.1 min

Peak Depth= 0.15' @ 13.32 hrs Capacity at bank full= 6.48 cfs 2.00' x 0.67' deep channel, n= 0.045 Winding stream, pools & shoals Side Slope Z-value= 1.0 '/' Top Width= 3.34' Length= 1,750.0' Slope= 0.0340 '/'

Type II 24-hr Q-10 Rainfall=3.20" Page 36

1/9/2007

Reach 3R: ex. roadside ditch

 Inflow Area =
 31.449 ac, Inflow Depth >
 1.43" for Q-10 event

 Inflow =
 8.39 cfs @
 12.61 hrs, Volume=
 3.739 af

 Outflow =
 8.37 cfs @
 12.63 hrs, Volume=
 3.739 af, Atten= 0%, Lag= 1.0 min

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Max. Velocity= 6.4 fps, Min. Travel Time= 1.2 min Avg. Velocity = 2.3 fps, Avg. Travel Time= 3.4 min

Peak Depth= 0.45' @ 12.63 hrs Capacity at bank full= 91.77 cfs Inlet Invert= 200.00', Outlet Invert= 165.00' 2.00' x 1.50' deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 2.0 '/' Top Width= 8.00' Length= 470.0' Slope= 0.0745 '/'

Reach 4R: (S/N 001) 4' culvert under rt 7

Inflow Area	a =	93.942 ac, Infl	low Depth > 0.60"	for Q-10 event	
Inflow	=	10.30 cfs @ 12	2.62 hrs, Volume=	4.690 af	
Outflow	=	10.30 cfs @ 12	2.63 hrs, Volume=	4.690 af,	Atten= 0%, Lag= 0.4 min

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Max. Velocity= 4.9 fps, Min. Travel Time= 0.6 min Avg. Velocity = 1.9 fps, Avg. Travel Time= 1.5 min

Peak Depth= 0.89' @ 12.63 hrs Capacity at bank full= 94.11 cfs Inlet Invert= 160.00', Outlet Invert= 156.00' 48.0" Diameter Pipe, n= 0.030 Corrugated metal Length= 175.0' Slope= 0.0229 '/'

Reach sl: stone lined channel

 Inflow Area =
 21.172 ac, Inflow Depth > 1.95" for Q-10 event

 Inflow =
 7.41 cfs @ 12.61 hrs, Volume=
 3.447 af

 Outflow =
 7.40 cfs @ 12.62 hrs, Volume=
 3.447 af, Atten= 0%, Lag= 0.9 min

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Max. Velocity= 5.3 fps, Min. Travel Time= 1.2 min Avg. Velocity = 1.8 fps, Avg. Travel Time= 3.3 min

Peak Depth= 0.30' @ 12.62 hrs Capacity at bank full= 133.67 cfs Inlet Invert= 234.00', Outlet Invert= 190.00' 4.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 365.0' Slope= 0.1205 '/'

Pond 1P: pond main pool

Inflow Area =	21.172 ac, Inflow Depth = 1.96"	for Q-10 event
Inflow =	32.62 cfs @ 12.00 hrs, Volume=	3.455 af
Outflow =	7.41 cfs @ 12.61 hrs, Volume=	3.447 af, Atten= 77%, Lag= 36.1 min
Primary =	7.41 cfs @ 12.61 hrs, Volume=	3.447 af
Secondary =	0.00 cfs $\overline{@}$ 2.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Starting Elev= 245.00' Surf.Area= 12,637 sf Storage= 36,029 cf Peak Elev= 249.26' @ 12.61 hrs Surf.Area= 23,828 sf Storage= 120,442 cf (84,413 cf above start) Plug-Flow detention time= 1,045.5 min calculated for 2.619 af (76% of inflow) Center-of-Mass det. time= 714.7 min (1,522.3 - 807.6)

Volume	Invert	Avail.	Storage	Storage	Description	
#1	240.00'	526	6,586 cf	Custon	n Stage Data (Pr	rismatic)Listed below (Recalc)
Elevatio	n Si	ırf.Area	Inc	Store	Cum.Store	
(fee		(sq-ft)	(cubic		(cubic-feet)	
240.0		4,312		0	0	
240.0		6,232	1(0,544	10,544	
242.0		8,623		4,855	25,399	
244.0		12,637		4,833 0,630	36,029	
245.5		17,255		7,473	43,502	
246.0		18,082		8,834	52,336	
248.0		21,523		9,605	91,941	
250.0		25,190		6,713	138,654	
262.0		29,084		5,644	464,298	
264.0		33,204		2,288	526,586	
Device	Routing	Invert	Outlet D	evices		
#1	Primary	245.00'	24.0" x	100.0' lo	ong Culvert CP	P, square edge headwall, Ke= 0.500
	- 5				2.00' S= 0.030	
			n= 0.013	B Corrug	gated PE, smoot	h interior
#2	Device 1	241.00'	5.0" x 3	0.0' lon	g Culvert CPP,	projecting, no headwall, Ke= 0.900
						67 '/' Cc= 0.900
			n= 0.010) PVC, s	smooth interior	
#3	Device 1	248.80'	24.0" Ho	oriz. Ori	fice/Grate Lim	ited to weir flow C= 0.600
#4	Secondary	253.00'	3.0' long	y x 18.0	' breadth Broad	I-Crested Rectangular Weir
			Head (fe	et) 0.20	0.40 0.60 0.8	0 1.00 1.20 1.40 1.60
			Coef. (E	nglish) 2	2.68 2.70 2.70	2.64 2.63 2.64 2.64 2.63
Drimary		av=7 41 cf	ፍ <i>በ</i> 12 ନ	1 hrs H\	M=249 26' TM=	234.30' (Dynamic Tailwater)

Primary OutFlow Max=7.41 cfs @ 12.61 hrs HW=249.26' TW=234.30' (Dynamic Tailwater) 1=Culvert (Passes 7.41 cfs of 27.30 cfs potential flow) 2=Culvert (Inlet Controls 1.07 cfs @ 7.8 fps)

-3=Orifice/Grate (Weir Controls 6.34 cfs @ 2.2 fps)

Secondary OutFlow Max=0.00 cfs @ 2.00 hrs HW=245.00' TW=234.00' (Dynamic Tailwater) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 2P: forbay

Inflow Area =	18.714 ac, Inflow Depth = 2.14"	for Q-10 event
Inflow =	67.74 cfs @ 11.94 hrs, Volume=	3.332 af
Outflow =	31.16 cfs @ 12.04 hrs, Volume=	3.332 af, Atten= 54%, Lag= 5.8 min
Primary =	31.16 cfs @ 12.04 hrs, Volume=	3.332 af
Secondary =	0.00 cfs $\overline{@}$ 2.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Starting Elev= 264.00' Surf.Area= 2,724 sf Storage= 6,078 cf Peak Elev= 268.24' @ 12.04 hrs Surf.Area= 8,813 sf Storage= 33,862 cf (27,784 cf above start) Plug-Flow detention time= 46.9 min calculated for 3.192 af (96% of inflow) Center-of-Mass det. time= 8.2 min (804.6 - 796.4)

Volume	Invert	Avail.	Storage	Storage	e Description			
#1	260.00'	75	5,303 cf	Custor	n Stage Data (Pris	smatic)Listed I	below (Recalc)	
Elevatio		urf.Area	Inc	Store	Cum.Store			
(fee		(sq-ft)		c-feet)	(cubic-feet)			
260.0		592	(00.01	0	0			
262.0		1,381		1,973	1,973			
264.0	00	2,724		4,105	6,078			
264.5		5,101		1,956	8,034			
266.0		6,486		8,690	16,725			
268.0		8,531		5,017	31,742			
270.0		10,837		9,368	51,110			
272.0	00	13,356	2	24,193	75,303			
Device	Routing	Invert	Outlet [Devices				
#1	Primary	260.00'	24.0" >	: 105.0' I	ong Culvert CPP	, square edge	headwall, Ke=	0.500
			Outlet I	nvert= 2	55.00' S= 0.0476	'/' Cc= 0.900		
			n= 0.01	3 Corru	gated PE, smooth	interior		
#2	Device 1	264.00'	-		ifice/Grate Limite			
#3	Secondary	270.50')' breadth Broad-			
			· ·	,	0 0.40 0.60 0.80			
			Coet. (E	nglish)	2.68 2.70 2.70 2	2.64 2.63 2.64	1 2.64 2.63	
	Primary OutFlow Max=31.15 cfs @ 12.04 hrs HW=268.24' TW=247.49' (Dynamic Tailwater)							

1=Culvert (Passes 31.15 cfs of 40.70 cfs potential flow) **2=Orifice/Grate** (Orifice Controls 31.15 cfs @ 9.9 fps)

Secondary OutFlow Max=0.00 cfs @ 2.00 hrs HW=264.00' TW=245.00' (Dynamic Tailwater) -3=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond CB41:

Inflow Area =	1.810 ac, Inflow Depth = 2.54"	for Q-10 event
Inflow =	7.91 cfs @ 11.95 hrs, Volume=	0.384 af
Outflow =	7.91 cfs @ 11.95 hrs, Volume=	0.384 af, Atten= 0%, Lag= 0.0 min
Primary =	7.91 cfs @ 11.95 hrs, Volume=	0.384 af

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs

Peak Elev= 310.04' @ 12.00 hrs Flood Elev= 309.90' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (782.6 - 782.6)

Device	Routing	Invert	Outlet Devices
#1	Primary	304.73'	18.0" x 270.0' long line to DMH 5 CPP, square edge headwall, Ke= 0.500 Outlet Invert= 301.90' S= 0.0105 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior
			s @ 11.95 hrs HW=307.75' TW=307.07' (Dynamic Tailwater) ntrols 4.60 cfs @ 2.6 fps)

Pond CB62:

Inflow Area =	13.351 ac, I	Inflow Depth = 2.26"	for Q-10 event	
Inflow =	49.92 cfs @	11.95 hrs, Volume=	2.510 af	
Outflow =	49.92 cfs @	11.95 hrs, Volume=	2.510 af, Atte	n= 0%, Lag= 0.0 min
Primary =	49.92 cfs @	11.95 hrs, Volume=	2.510 af	

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 303.25' @ 11.95 hrs Flood Elev= 309.50' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (794.5 - 794.5)

Device	Routing	Invert	Outlet Devices
#1	Primary	297.90'	36.0" x 260.0' long line to CB 64 CPP, square edge headwall, Ke= 0.500 Outlet Invert= 296.87' S= 0.0040 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior

Primary OutFlow Max=48.54 cfs @ 11.95 hrs HW=303.16' TW=300.68' (Dynamic Tailwater) 1=line to CB 64 (Outlet Controls 48.54 cfs @ 6.9 fps)

Pond CB64:

Inflow Area = Inflow = Outflow = Primary =	15.789 ac, Inflow Depth = 60.18 cfs @ 11.94 hrs, Vo 60.18 cfs @ 11.94 hrs, Vo 60.18 cfs @ 11.94 hrs, Vo	blume= 2.979 af blume= 2.979 af, Atten	= 0%, Lag= 0.0 min			
Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 300.70' @ 11.95 hrs Flood Elev= 309.50' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (794.2 - 794.2)						
Device Routing	Invert Outlet Devices	S				

#1	Primary	296 82'	42.0" x 360.0' long storm line to CB 78
	i innary	200.02	

severance proposed SN 001 Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

CPP, square edge headwall, Ke= 0.500 Outlet Invert= 295.35' S= 0.0041 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior

Pond CB79: line to pond

Inflow Area =		17.128 ac, Inflow Depth = 2.27"	for Q-10 event
Inflow	=	65.93 cfs @ 11.94 hrs, Volume=	3.241 af
Outflow	=	65.93 cfs @ 11.94 hrs, Volume=	3.241 af, Atten= 0%, Lag= 0.0 min
Primary	=	65.93 cfs @ 11.94 hrs, Volume=	3.241 af

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 298.38' @ 11.94 hrs Flood Elev= 310.50' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Device Routing Invert Outlet Devices	
#1 Primary 294.60' 42.0'' x 115.0' long line to pond CPP, square edge headwall, Ke= 0.500 Outlet Invert= 271.60' S= 0.2000 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior	

Primary OutFlow Max=65.91 cfs @ 11.94 hrs HW=298.37' TW=267.28' (Dynamic Tailwater) **1=line to pond** (Inlet Controls 65.91 cfs @ 6.9 fps)

Pond DMH 5:

Inflow Area =		2.753 ac, Inflow Depth =	2.51" fo	or Q-10 event	
Inflow	=	11.56 cfs @ 11.96 hrs, Vo	lume=	0.576 af	
Outflow	=	11.56 cfs @ 11.96 hrs, Vo	lume=	0.576 af,	Atten= 0%, Lag= 0.0 min
Primary	=	11.56 cfs @ 11.96 hrs, Vo	lume=	0.576 af	-

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 308.97' @ 11.99 hrs Flood Elev= 312.00' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (785.1 - 785.1)

Device	Routing	Invert	Outlet Devices
#1	Primary	301.19'	20.0" x 142.0' long Storm line to DMH 4 CPP, square edge headwall, Ke= 0.500 Outlet Invert= 300.61' S= 0.0041 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior

Primary OutFlow Max=5.01 cfs @ 11.96 hrs HW=307.46' TW=307.16' (Dynamic Tailwater) **1=Storm line to DMH 4** (Outlet Controls 5.01 cfs @ 2.3 fps)

Pond DMH1:

Inflow Area =	2.937 ac, Inflow Depth = 2.16"	for Q-10 event		
Inflow =	11.07 cfs @ 11.93 hrs, Volume=	0.530 af		
Outflow =	11.07 cfs @ 11.93 hrs, Volume=	0.530 af, Atten= 0%, Lag= 0.0 min		
Primary =	11.07 cfs @ 11.93 hrs, Volume=	0.530 af		
Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 307.70' @ 11.93 hrs Flood Elev= 312.64' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (787.0 - 787.0)				

Device	Routing	Invert	Outlet Devices
#1	Primary	305.76'	20.0" x 251.0' long line to DMH 2 CPP, square edge headwall, Ke= 0.500 Outlet Invert= 299.63' S= 0.0244 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior

Primary OutFlow Max=10.95 cfs @ 11.93 hrs HW=307.68' TW=304.67' (Dynamic Tailwater) 1=line to DMH 2 (Inlet Controls 10.95 cfs @ 5.0 fps)

Pond DMH2:

Inflow Area =	12.038 ac, Inflow Depth = 2.25"	for Q-10 event
Inflow =	44.44 cfs @ 11.95 hrs, Volume=	2.253 af
Outflow =	44.44 cfs @ 11.95 hrs, Volume=	2.253 af, Atten= 0%, Lag= 0.0 min
Primary =	44.44 cfs @ 11.95 hrs, Volume=	2.253 af

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 305.89' @ 11.96 hrs Flood Elev= 313.20' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (794.7 - 794.7)

Device	Routing	Invert	Outlet Devices
#1	Primary	299.53'	36.0" x 432.0' long storm line to CB 62 CPP, square edge headwall, Ke= 0.500 Outlet Invert= 297.95' S= 0.0037 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior

Primary OutFlow Max=40.61 cfs @ 11.95 hrs HW=305.53' TW=303.16' (Dynamic Tailwater) 1=storm line to CB 62 (Outlet Controls 40.61 cfs @ 5.7 fps)

Pond DMH3:

Inflow Area	=	1.645 ac, Inflow Depth = 2.3	5" for Q-10 event	
Inflow :	=	7.10 cfs @ 11.94 hrs, Volum	e= 0.322 af	
Outflow :	=	7.10 cfs @ 11.94 hrs, Volum	e= 0.322 af,	Atten= 0%, Lag= 0.0 min
Primary :	=	7.10 cfs @ 11.94 hrs, Volum	e= 0.322 af	

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 307.56' @ 11.97 hrs Flood Elev= 311.60' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= (not calculated: outflow precedes inflow)

Device	Routing	Invert	Outlet Devices
#1	Primary	301.60'	18.0" x 425.0' long storm line to DMH 2 CPP, square edge headwall, Ke= 0.500 Outlet Invert= 299.63' S= 0.0046 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior

Primary OutFlow Max=5.07 cfs @ 11.94 hrs HW=306.51' TW=305.33' (Dynamic Tailwater) 1=storm line to DMH 2 (Outlet Controls 5.07 cfs @ 2.9 fps)

Pond DMH4:

Inflow Area = Inflow = Outflow = Primary =	4.491 ac, Inflow Depth = 2.34" 16.94 cfs @ 11.97 hrs, Volume= 16.94 cfs @ 11.97 hrs, Volume= 16.94 cfs @ 11.97 hrs, Volume=	0.877 af 0.877 af, Atten= 0%, Lag= 0.0 min			
Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 307.71' @ 11.98 hrs Flood Elev= 313.20' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (793.8 - 793.8)					
Device Routing	n Invert Outlet Devices				

DeviceRoutingInvertOutlet Devices#1Primary300.36'24.0" x 210.0' long line to DMH 2
CPP, square edge headwall, Ke= 0.500
Outlet Invert= 299.63' S= 0.0035 '/' Cc= 0.900
n= 0.013 Corrugated PE, smooth interior

Primary OutFlow Max=15.99 cfs @ 11.97 hrs HW=307.42' TW=305.76' (Dynamic Tailwater) 1=line to DMH 2 (Outlet Controls 15.99 cfs @ 5.1 fps)

severance proposed SN 001	7
Prepared by Civil Engineering Associates	
HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LL	С

Time span=2.00-72.00 hrs, dt=0.02 hrs, 3501 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method

Subcatchment 2:	Runoff Area=1.522 ac Runoff Depth=4.39" Flow Length=505' Tc=2.8 min CN=93 Runoff=11.86 cfs 0.557 af
Subcatchment 3:	Runoff Area=1.276 ac Runoff Depth=3.07" Flow Length=479' Tc=5.0 min CN=80 Runoff=7.13 cfs 0.326 af
Subcatchment 4:	Runoff Area=1.661 ac Runoff Depth>4.73" Flow Length=415' Tc=2.0 min CN=96 Runoff=13.66 cfs 0.655 af
Subcatchment 5:	Runoff Area=0.638 ac Runoff Depth=4.28" Flow Length=370' Tc=3.6 min CN=92 Runoff=4.79 cfs 0.228 af
Subcatchment 6:	Runoff Area=1.007 ac Runoff Depth=4.28" Flow Length=144' Tc=3.3 min CN=92 Runoff=7.63 cfs 0.360 af
Subcatchment 7:	Runoff Area=1.715 ac Runoff Depth=3.96" Flow Length=316' Tc=3.4 min CN=89 Runoff=12.36 cfs 0.566 af
Subcatchment 8:	Runoff Area=1.250 ac Runoff Depth=4.07" Flow Length=74' Tc=8.4 min CN=90 Runoff=7.78 cfs 0.424 af
Subcatchment 9:	Runoff Area=0.664 ac Runoff Depth=4.18" Flow Length=109' Tc=4.2 min CN=91 Runoff=4.81 cfs 0.231 af
Subcatchment 10:	Runoff Area=0.916 ac Runoff Depth=3.96" Flow Length=140' Tc=2.1 min CN=89 Runoff=6.85 cfs 0.303 af
Subcatchment 11:	Runoff Area=0.649 ac Runoff Depth=4.39" Flow Length=393' Tc=4.5 min CN=93 Runoff=4.80 cfs 0.238 af
Subcatchment 12:	Runoff Area=1.738 ac Runoff Depth=3.96" Flow Length=481' Tc=8.4 min CN=89 Runoff=10.63 cfs 0.574 af
Subcatchment 13:	Runoff Area=1.810 ac Runoff Depth=4.51" Flow Length=220' Tc=4.7 min CN=94 Runoff=13.47 cfs 0.680 af
Subcatchment 14:	Runoff Area=0.943 ac Runoff Depth=4.39" Flow Length=510' Tc=6.7 min CN=93 Runoff=6.50 cfs 0.345 af
Subcatchment 15:	Runoff Area=1.339 ac Runoff Depth=4.28" Flow Length=350' Tc=2.2 min CN=92 Runoff=10.45 cfs 0.478 af
Subcatchment 16: forbay area	Runoff Area=1.586 ac Runoff Depth=1.94" Flow Length=100' Tc=4.3 min CN=67 Runoff=5.87 cfs 0.257 af

severance proposed SN 001TPrepared by Civil Engineering AssociatesTHydroCAD® 7.10s/n 000787© 2005 HydroCAD Software Solutions LLC

Type II 24-hr Q-100 Rainfall=5.20" Page 45 1/9/2007

Subcatchment 17: pond area	Runoff Area=2.458 ac Runoff Depth=1.79" Flow Length=77' Tc=3.1 min CN=65 Runoff=8.75 cfs 0.366 af
Subcatchment A: post-dev	Runoff Area=447,647 sf Runoff Depth=1.28" Flow Length=1,230' Tc=23.2 min CN=58 Runoff=11.70 cfs 1.096 af
Subcatchment B: post-dev	Runoff Area=641,086 sf Runoff Depth=1.08" Flow Length=1,580' Tc=22.7 min CN=55 Runoff=13.45 cfs 1.326 af
Subcatchment C: post-dev	Runoff Area=1,527,401 sf Runoff Depth=0.72" Flow Length=990' Tc=20.9 min CN=49 Runoff=17.90 cfs 2.101 af
Subcatchment D:	Runoff Area=239,147 sf Runoff Depth=0.78" Flow Length=385' Tc=12.2 min CN=50 Runoff=4.53 cfs 0.355 af
Subcatchment E: western side of rte	7 Runoff Area=314,587 sf Runoff Depth=1.49" Flow Length=1,220' Tc=10.0 min CN=61 Runoff=15.92 cfs 0.897 af
Reach 1R: stream reach n=0.045	Peak Depth=1.53' Max Vel=5.2 fps Inflow=34.30 cfs 4.679 af L=330.0' S=0.0300 '/' Capacity=17.80 cfs Outflow=34.25 cfs 4.679 af
Reach 2R: stream reach n=0.045	Peak Depth=1.18' Max Vel=4.3 fps Inflow=17.90 cfs 2.101 af _=1,750.0' S=0.0340 '/' Capacity=6.48 cfs Outflow=15.21 cfs 2.101 af
Reach 3R: ex. roadside ditch n=0.030	Peak Depth=0.87' Max Vel=9.1 fps Inflow=29.86 cfs 7.675 af L=470.0' S=0.0745 '/' Capacity=91.77 cfs Outflow=29.83 cfs 7.675 af
Reach 4R: (S/N 001) 4' culvert under D=48.0" n=0.030 L	
Reach sl: stone lined channel n=0.040 L	Peak Depth=0.58' Max Vel=7.6 fps Inflow=22.98 cfs 6.579 af =365.0' S=0.1205 '/' Capacity=133.67 cfs Outflow=22.98 cfs 6.579 af
Pond 1P: pond main pool Primary=22.98	Peak Elev=250.86' Storage=160,500 cf Inflow=55.03 cfs 6.588 af cfs 6.579 af Secondary=0.00 cfs 0.000 af Outflow=22.98 cfs 6.579 af
Pond 2P: forbay Primary=41.43 c	Peak Elev=271.50' Storage=68,811 cf Inflow=122.81 cfs 6.221 af fs 6.104 af Secondary=10.56 cfs 0.117 af Outflow=51.99 cfs 6.221 af
Pond CB41:	Peak Elev=336.47' Inflow=13.47 cfs 0.680 af 18.0" x 270.0' Culvert Outflow=13.47 cfs 0.680 af
Pond CB62:	Peak Elev=317.36' Inflow=89.07 cfs 4.626 af 36.0" x 260.0' Culvert Outflow=89.07 cfs 4.626 af
Pond CB64:	Peak Elev=309.50' Inflow=107.11 cfs 5.486 af 42.0" x 360.0' Culvert Outflow=107.11 cfs 5.486 af
Pond CB79: line to pond	Peak Elev=302.75' Inflow=117.15 cfs 5.964 af 42.0" x 115.0' Culvert Outflow=117.15 cfs 5.964 af

severance proposed SN 001 Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Sc	Type II 24-hr Q-100 Rainfall=5.20" Page 46 plutions LLC 1/9/2007
Pond DMH 5:	Peak Elev=333.90' Inflow=19.80 cfs 1.025 af 20.0" x 142.0' Culvert Outflow=19.80 cfs 1.025 af
Pond DMH1:	Peak Elev=328.86' Inflow=19.99 cfs 0.981 af 20.0" x 251.0' Culvert Outflow=19.99 cfs 0.981 af
Pond DMH2:	Peak Elev=325.22' Inflow=79.48 cfs 4.158 af 36.0" x 432.0' Culvert Outflow=79.48 cfs 4.158 af
Pond DMH3:	Peak Elev=329.42' Inflow=12.42 cfs 0.587 af 18.0" x 425.0' Culvert Outflow=12.42 cfs 0.587 af
Pond DMH4:	Peak Elev=330.55' Inflow=29.78 cfs 1.599 af 24.0" x 210.0' Culvert Outflow=29.78 cfs 1.599 af

Total Runoff Area = 93.942 ac Runoff Volume = 12.363 af Average Runoff Depth = 1.58"

Subcatchment 2:

Runoff = 11.86 cfs @ 11.93 hrs, Volume= 0.557 af, Depth= 4.39"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-100 Rainfall=5.20"

Area	(ac) C	N Desc	cription					
1.	1.186 98 Paved parking & roofs							
0.	0.336 74 >75% Grass cover, Good, HSG C							
1.	1.522 93 Weighted Average							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
1.2	75	0.0160	1.0		Sheet Flow, flow off parking lot			
1.2	300	0.0060	4.1	5.00	Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31'			
0.4	130	0.0070	5.3	11.64	n= 0.013 Corrugated PE, smooth interior Circular Channel (pipe), flow to CB 65 Diam= 20.0" Area= 2.2 sf Perim= 5.2' r= 0.42' n= 0.013 Corrugated PE, smooth interior			
2.8	505	Total						

Subcatchment 3:

Runoff = 7.13 cfs @ 11.96 hrs, Volume= 0.326 af, Depth= 3.07"

Area	(ac) C	N Desc	cription					
-	0.650 98 Paved parking & roofs							
	0.626 61 >75% Grass cover, Good, HSG B 1.276 80 Weighted Average							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
3.2	35	0.0600	0.2		Sheet Flow, flow to YD			
1.3	300	0.0074	3.9	3.06	Grass: Short n= 0.150 P2= 2.30" Circular Channel (pipe), Diam= 12.0" Area= 0.8 sf Perim= 3.1' r= 0.25' n= 0.013 Corrugated PE, smooth interior			
0.5	144	0.0080	4.7	5.78	0			
5.0	479	Total						

severance proposed SN 001 Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Sc	Type II 24-hr Q-100 Rainfall=5.20" Page 48 Page 48 oftware Solutions LLC 1/9/2007							
Subc	Subcatchment 4:							
Runoff = 13.66 cfs @ 11.92 hrs, Volu	me= 0.655 af, Depth> 4.73"							
Runoff by SCS TR-20 method, UH=SCS, Time S Type II 24-hr Q-100 Rainfall=5.20"	Span= 2.00-72.00 hrs, dt= 0.02 hrs							
Area (ac) CN Description								
1.523 98 Paved parking & roofs								
0.138 74 >75% Grass cover, Good, 1.661 96 Weighted Average	HSGC							
1.001 30 Weighted Average								
Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs)	Description							
(min) (feet) (ft/ft) (ft/sec) (cfs) 0.7 50 0.0300 1.2	Sheet Flow, flow off parking lot							
	Smooth surfaces n= 0.011 P2= 2.30"							
1.3 365 0.0085 4.9 5.96	Circular Channel (pipe), flow to DMH 1 Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31' n= 0.013 Corrugated PE, smooth interior							
2.0 415 Total	······································							
Q. I.	- 4 - 1							
Subo	atchment 5:							
Runoff = 4.79 cfs @ 11.94 hrs, Volu	me= 0.228 af, Depth= 4.28"							
Runoff by SCS TR-20 method, UH=SCS, Time S Type II 24-hr Q-100 Rainfall=5.20"	Span= 2.00-72.00 hrs, dt= 0.02 hrs							
Area (ac) CN Description								
0.469 98 Paved parking & roofs								
0.169 74 >75% Grass cover, Good, 0.638 92 Weighted Average	HSGC							
0.000 92 Weighten Avelage								
TcLengthSlopeVelocityCapacity(min)(feet)(ft/ft)(ft/sec)(cfs)	Description							
2.3 30 0.1000 0.2	Sheet Flow, flow off lawn							

2.3	30	0.1000	0.2		Sheet Flow, flow off lawn
					Grass: Short n= 0.150 P2= 2.30"
0.8	140	0.0210	2.9		Shallow Concentrated Flow, flow along curb
					Paved Kv= 20.3 fps
0.5	200	0.0180	7.1	8.67	Circular Channel (pipe), flow in storm line
					Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31'
					n= 0.013 Corrugated PE, smooth interior
2.0	070	Tatal			

3.6 370 Total

Subcatchment 6:

Runoff	=	7.63 cfs @	11.94 hrs.	Volume=	0.360 af.	Depth= 4.28"
rtarion			11.041110,	Volume	0.000 ui,	

Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

Area	(ac) C	N Desc	cription					
	0.745 98 Paved parking & roofs							
	0.262 74 >75% Grass cover, Good, HSG C							
1.	1.007 92 Weighted Average							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
2.7	30	0.0670	0.2	(010)	Sheet Flow, flow off grass			
					Grass: Short n= 0.150 P2= 2.30"			
0.1	20	0.0120	2.2		Shallow Concentrated Flow, flow along curb Paved Kv= 20.3 fps			
0.5	94	0.0040	3.3	4.09	Circular Channel (pipe), flow in storm line			
					Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31' n= 0.013 Corrugated PE, smooth interior			
3.3	144	Total						
				Subo	catchment 7:			
Runoff	_	10.26 of	a 11 0	4 bre Volu	man 0.566 af Danth- 3.06"			
Runon	=	12.30 CR	s@ 11.94	4 hrs, Volu	me= 0.566 af, Depth= 3.96"			
				CS, Time S	Span= 2.00-72.00 hrs, dt= 0.02 hrs			
Type II 2	Type II 24-hr Q-100 Rainfall=5.20"							
Area	Area (ac) CN Description							
1.	.045 9	8 Pave	ed parking					
				over, Good,	, HSG C			
1.	.715 8	89 Weig	ghted Aver	age				
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
2.5	25	0.0600	0.2		Sheet Flow, flow to YD			
0.6	115	0.0050	3.2	2.52	Grass: Short n= 0.150 P2= 2.30" Circular Channel (pipe),			
0.0	115	0.0000	5.2	2.52	Diam= 12.0" Area= 0.8 sf Perim= 3.1' r= 0.25'			
					n= 0.013 Corrugated PE, smooth interior			
0.1	110	0.0850	13.2	10.39	Circular Channel (pipe), Diam= 12.0" Area= 0.8 sf Perim= 3.1' r= 0.25'			
					n= 0.013 Corrugated PE, smooth interior			
0.2	66	0.0060	4.9	10.78	Circular Channel (pipe), line to DMH 2			
					Diam= 20.0" Area= 2.2 sf Perim= 5.2' r= 0.42'			
3.4	316	Total			n= 0.013 Corrugated PE, smooth interior			
≺ /	316	Total						

Subcatchment 8:

Runoff = 7.78 cfs @ 11.99 hrs, Volume= 0.424 af, Depth= 4.07"

severance proposed SN 001

Type II 24-hr Q-100 Rainfall=5.20" Page 50 1/9/2007

Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

Area	(ac) C	N Dese	cription					
			ed parking					
0.	428 7	'4 >75 '	% Grass co	over, Good	, HSG C			
1.	250 9	0 Weig	ghted Aver	age				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.4	60	0.0310	0.2		Sheet Flow,			
0.2	8	0.0200	0.7		Grass: Short n= 0.150 P2= 2.30" Sheet Flow, flow across sidewalk Smooth surfaces n= 0.011 P2= 2.30"			
1.8	6	0.0200	0.1		Sheet Flow, flow to street CB 52 Grass: Dense n= 0.240 P2= 2.30"			
8.4	74	Total						
				<u> </u>				
				Subo	catchment 9:			
Runoff	=	4.81 cfs	s @ 11.9	5 hrs, Volu	me= 0.231 af, Depth= 4.18"			
	Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-100 Rainfall=5.20"							

Area	(ac) C	N Desc	cription		
-			ed parking		
				over, Good	, HSG C
0.	.664 9	91 Weig	ghted Aver	age	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
2.0	18	0.0500	0.1		Sheet Flow,
					Grass: Short n= 0.150 P2= 2.30"
0.2	8	0.0300	0.8		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 2.30"
1.5	8	0.0200	0.1		Sheet Flow,
0.5		0.0400	0.7		Grass: Short n= 0.150 P2= 2.30"
0.5	75	0.0180	2.7		Shallow Concentrated Flow, flow along curb to CB 62
					Paved Kv= 20.3 fps
4.2	109	Total			

Subcatchment 10:

Runoff = 6.85 cfs @ 11.92 hrs, Volume= 0.303 af, Depth= 3.96"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-100 Rainfall=5.20"

A	rea (ac)	CN	Description
	0.564	98	Paved parking & roofs
	0.352	74	>75% Grass cover, Good, HSG C
	0.916	89	Weighted Average

_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	1.2	18	0.2000	0.3		Sheet Flow, Grass: Short n= 0.150 P2= 2.30"
	0.8	90	0.0160	1.9		Shallow Concentrated Flow, roadside swale Grassed Waterway Kv= 15.0 fps
	0.1	32	0.0150	6.4	7.91	Circular Channel (pipe), flow to CB 76 Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31' n= 0.013 Corrugated PE, smooth interior
-	2.1	140	Total			

140 I otal

Subcatchment 11:

Runoff 4.80 cfs @ 11.95 hrs, Volume= 0.238 af, Depth= 4.39" =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-100 Rainfall=5.20"

_	Area	(ac) C	N Dese	cription					
	0.	510 9	8 Pave	ed parking	& roofs				
_	0.	<u>139 7</u>	<u>'4 >759</u>	<u>% Grass co</u>	over, Good,	, HSG C			
0.649 93 Weighted Average									
	_								
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	2.9	25	0.0400	0.1		Sheet Flow,			
						Grass: Short n= 0.150 P2= 2.30"			
	1.1	65	0.0180	1.0		Sheet Flow, flow across lot			
						Smooth surfaces n= 0.011 P2= 2.30"			
	0.3	195	0.0380	10.3	12.59	Circular Channel (pipe), flow in line to DMH 6			
						Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31'			
						n= 0.013 Corrugated PE, smooth interior			
	0.2	108	0.0190	8.2	14.48	Circular Channel (pipe), line to CB 62			
						Diam= 18.0" Area= 1.8 sf Perim= 4.7' r= 0.38'			
						n= 0.013 Corrugated PE, smooth interior			
	4.5	393	Total						

Subcatchment 12:

Runoff 10.63 cfs @ 12.00 hrs, Volume= 0.574 af, Depth= 3.96" =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-100 Rainfall=5.20"

_	Area (ac)	CN	Description
	1.061	98	Paved parking & roofs
0.677 74 >75% Grass cover, Good, HSG C			>75% Grass cover, Good, HSG C
	1.738	89	Weighted Average

severance proposed SN 001

Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
75	0.0400	0.2		Sheet Flow, flow to YD
00	0 0000	0.5	0.70	Grass: Short n= 0.150 P2= 2.30"
36	0.0060	3.5	2.76	Circular Channel (pipe), flow in YD line Diam= 12.0" Area= 0.8 sf Perim= 3.1' r= 0.25'
				n= 0.013 Corrugated PE, smooth interior
370	0.0090	5.0	6.13	Circular Channel (pipe), flow to DMH 4
				Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31'
				n= 0.013 Corrugated PE, smooth interior
	(feet) 75 36	(feet) (ft/ft) 75 0.0400 36 0.0060	(feet) (ft/ft) (ft/sec) 75 0.0400 0.2 36 0.0060 3.5	(feet) (ft/ft) (ft/sec) (cfs) 75 0.0400 0.2 36 0.0060 3.5 2.76

8.4 481 Total

Subcatchment 13:

Runoff = 13.47 cfs @ 11.95 hrs, Volume= 0.680 af, Depth= 4.51"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-100 Rainfall=5.20"

Area	(ac) C	N Dese	cription				
Area (ac) CN Description 1.546 98 Paved parking & roofs 0.264 74 >75% Grass cover, Good, HSG C 1.810 94 Weighted Average Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 3.6 30 0.0330 0.1 Sheet Flow, flow off lawn Grass: Short n= 0.150 P2= 2.30"							
1.546 98 Paved parking & roofs 0.264 74 >75% Grass cover, Good, HSG C 1.810 94 Weighted Average Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 3.6 30 0.0330 0.1 Sheet Flow, flow off lawn Grass: Short n= 0.150 P2= 2.30" 1.1 190 0.0200 2.9 Shallow Concentrated Flow, flow along curb Paved Kv= 20.3 fps Flow, flow Flow, flow							
1.54698Paved parking & roofs0.26474>75% Grass cover, Good, I1.81094Weighted AverageTcLengthSlopeVelocity(min)(feet)(ft/ft)(ft/sec)3.6300.03300.1							
-	•		,		Description		
3.6	30	0.0330	0.1		Sheet Flow, flow off lawn		
1.1	190	0.0200	2.9		Shallow Concentrated Flow, flow along curb		
4.7	220	Total					

Subcatchment 14:

Runoff = 6.50 cfs @ 11.98 hrs, Volume= 0.345 af, Depth= 4.39"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-100 Rainfall=5.20"

	Area (ac)	CN	Description
	0.765	98	Paved parking & roofs
0.178 74 >75% Grass cover, Good, HSG C			>75% Grass cover, Good, HSG C
	0.943	93	Weighted Average

Type II 24-hr Q-100 *Rainfall=5.20"* Page 52 1/9/2007

severance proposed SN 001

Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

Capacity Tc Length Slope Velocity Description (feet) (ft/ft) (ft/sec) (cfs) (min) 4.3 35 0.0290 Sheet Flow, flow off lawn 0.1 Grass: Short n= 0.150 P2= 2.30" 0.4 80 0.0250 3.2 Shallow Concentrated Flow, flow along curb Paved Kv= 20.3 fps 2.0 395 0.0040 3.3 4.09 Circular Channel (pipe), flow in pipe to DMH 5 Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31' n= 0.013 Corrugated PE, smooth interior

6.7 510 Total

Subcatchment 15:

Runoff = 10.45 cfs @ 11.92 hrs, Volume= 0.478 af, Depth= 4.28"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-100 Rainfall=5.20"

Area	(ac) C	N Dese	cription					
			ed parking		HSG C			
0.328 74 >75% Grass cover, Good, HSG C 1.339 92 Weighted Average Tc Length Slope Velocity Capacity Description (min) (ffeet) (ff/ft) (ff/sec) (cfs)								
			,		Description			
1.3	90	0.0200	1.1		Sheet Flow, flow across parking lot Smooth surfaces n= 0.011 P2= 2.30"			
0.8	150	0.0220	3.0		Shallow Concentrated Flow, Paved Kv= 20.3 fps			
0.1	110	0.0800	14.9	18.27	Circular Channel (pipe), line to CB 79 Diam= 15.0" Area= 1.2 sf Perim= 3.9' r= 0.31' n= 0.013 Corrugated PE, smooth interior			
2.2	350	Total						

Subcatchment 16: forbay area

Runoff 5.87 cfs @ 11.96 hrs, Volume= 0.257 af, Depth= 1.94" =

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-100 Rainfall=5.20"

 Area (ac)	CN	Description
0.094	98	Paved parking & roofs
0.103	85	Gravel roads, HSG B
0.386	78	Meadow, non-grazed, HSG D
 1.003	58	Meadow, non-grazed, HSG B
1.586	67	Weighted Average

Type II 24-hr Q-100 Rainfall=5.20" Page 53

1/9/2007

		posed			Type II 24-hr Q-100 Ra	
			ering Ass ′© 2005 H		oftware Solutions LLC	Page 54 1/9/2007
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
4.3	100	0.2360	0.4	(00)	Sheet Flow, flow from pond bank	
					Grass: Short n= 0.150 P2= 2.30"	
			S	ubcatchr	ment 17: pond area	
Runoff	=	8.75 cf	s@ 11.9	4 hrs, Volu	me= 0.366 af, Depth= 1.79"	
		R-20 meth 00 Rainfa		CS, Time S	Span= 2.00-72.00 hrs, dt= 0.02 hrs	
Area			cription			
			ds, Good,	HSG B grazed, HS	GB	
0.	289 9	98 pond	d water sur	face		
			% Grass co /el roads, l	over, Good, HSG C	, HSG B	
-			phted Aver			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
3.1	77	0.3300	0.4	(010)	Sheet Flow, flow on pond bank Grass: Short n= 0.150 P2= 2.30"	
			:	Subcatch	iment A: post-dev	
Runoff	=	11.70 cfs	s @ 12.1	9 hrs, Volu	ime= 1.096 af, Depth= 1.28"	
		R-20 meth 00 Rainfa		CS, Time S	Span= 2.00-72.00 hrs, dt= 0.02 hrs	
А	rea (sf)	CN D	escription			
	23,840	98 e	x road			
	27,667 29,865		rush, Goo Voods. Go	d, HSG B od, HSG D		
3	66,275	55 V	Voods, Go	od, HSG B		
4	47,647	58 V	Veighted A	verage		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
19.0	150	0.0130	0.1		Sheet Flow, Grass: Short n= 0.150 P2= 2.30"	
2.8	340	0.1600	2.0		Shallow Concentrated Flow,	
1.4	740	0.1000	8.9	24.00	Woodland Kv= 5.0 fps Trap/Vee/Rect Channel Flow,	
1.7	7 - 10	0.1000	0.0	27.00	Bot.W=2.00' D=0.67' Z= 3.0 '/' Top.W=6.02	2'
23.2	1,230	Total			n= 0.030 Earth, grassed & winding	
	,==••					

Subcatchment B: post-dev

Runoff = 13.45 cfs @ 12.19 hrs, Volume= 1.326 af, Depth= 1.08"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-100 Rainfall=5.20"

_	A	rea (sf)	CN	Description		
	641,086		55	Woods, Go	od, HSG B	
	Tc (min)	Length (feet)			Capacity (cfs)	Description
	15.2	100	0.010	0.1		Sheet Flow,
	1.4	125	5 0.0100	0 1.5		Grass: Short n= 0.150 P2= 2.30" Shallow Concentrated Flow, Grassed Waterway Kv= 15.0 fps
	1.0	155	5 0.290	0 2.7		Shallow Concentrated Flow,
						Woodland Kv= 5.0 fps
	1.8	400	0.100) 3.7	2.44	Trap/Vee/Rect Channel Flow,
						Bot.W=1.00' D=0.33' Z= 3.0 '/' Top.W=2.98' n= 0.045 Winding stream, pools & shoals
	3.3	800	0.047	0 4.0	6.05	Trap/Vee/Rect Channel Flow,
						Bot.W=2.00' D=0.50' Z= 2.0 '/' Top.W=4.00'
_						n= 0.040 Winding stream, pools & shoals
	22.7	1 580) Total			

22.7 1,580 Total

Subcatchment C: post-dev

Runoff = 17.90 cfs @ 12.19 hrs, Volume= 2.101 af, Depth= 0.72"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-100 Rainfall=5.20"

Area (sf)	CN	Description
22,400	98	ex road and bikepath
40,990	98	ex houses and drives
165,352	70	Woods, Good, HSG C
517,000	30	Woods, Good, HSG A
43,081	39	>75% Grass cover, Good, HSG A
738,578	55	Woods, Good, HSG B
1,527,401	49	Weighted Average

severance proposed SN 001

Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
14.3	100	0.0150	0.1		Sheet Flow,
					Cultivated: Residue>20% n= 0.170 P2= 2.30"
2.4	160	0.0150	1.1		Shallow Concentrated Flow,
					Cultivated Straight Rows Kv= 9.0 fps
1.2	180	0.2670	2.6		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps
3.0	550	0.0330	3.1	3.08	Trap/Vee/Rect Channel Flow,
					Bot.W=1.00' D=0.50' Z= 2.0 '/' Top.W=3.00'
					n= 0.040 Winding stream, pools & shoals

20.9 990 Total

Subcatchment D:

						-	
Runoff	=	4.53 cfs @	12.07 hrs,	Volume=	0.355 af,	Depth= 0).78"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-100 Rainfall=5.20"

	Ar	rea (sf)	CN	Description		
7,500 98 ex road						
	10	68,267	55	Woods, Go	od, HSG B	
		63,380	30	Woods, Go	od, HSG A	
	239,147			Weighted A	verage	
	Tc in)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description
10).7	120	0.250	0.2		Sheet Flow,
	1.5	265	0.3400	0 2.9		Woods: Light underbrush n= 0.400 P2= 2.30" Shallow Concentrated Flow, Woodland Kv= 5.0 fps
12	2.2	385	Total			

Subcatchment E: western side of rte 7

Runoff = 15.92 cfs @ 12.03 hrs, Volume= 0.897 af, Depth= 1.49"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Type II 24-hr Q-100 Rainfall=5.20"

 Area (sf)	CN	Description
23,840	98	ex pavement
 290,747	58	Woods/grass comb., Good, HSG B
 314,587	61	Weighted Average

Type II 24-hr Q-100 Rainfall=5.20" Page 56

1/9/2007

severance proposed SN 001

Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

Capacity Slope Velocity Description Tc Length (feet) (ft/ft) (ft/sec) (cfs) (min) Sheet Flow. 5.7 0.4000 70 0.2 Woods: Light underbrush n= 0.400 P2= 2.30" 175 0.4000 0.9 3.2 Shallow Concentrated Flow, Woodland Kv= 5.0 fps 1.7 7.6 Trap/Vee/Rect Channel Flow, roadside ditch 800 0.1000 11.96 Bot.W=1.00' D=0.67' Z= 2.0 '/' Top.W=3.68' n= 0.033 Earth, grassed & winding 0.7 175 0.0200 Circular Channel (pipe), ex culvert under rd 4.4 13.86 Diam= 24.0" Area= 3.1 sf Perim= 6.3' r= 0.50' n= 0.030 Corrugated metal **Direct Entry, outlet conditions** 1.0

10.0 1,220 Total

Reach 1R: stream reach

Inflow Area	=	62.494 ac, Inflow Depth = 0.90	for Q-100 event
Inflow	=	34.30 cfs @ 12.19 hrs, Volume	= 4.679 af
Outflow	=	34.25 cfs @ 12.21 hrs, Volume	= 4.679 af, Atten= 0%, Lag= 0.9 min

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Max. Velocity= 5.2 fps, Min. Travel Time= 1.1 min Avg. Velocity = 1.4 fps, Avg. Travel Time= 3.9 min

Peak Depth= 1.53' @ 12.21 hrs Capacity at bank full= 17.80 cfs 3.00' x 1.00' deep channel, n= 0.045 Winding stream, pools & shoals Side Slope Z-value= 1.0 '/' Top Width= 5.00' Length= 330.0' Slope= 0.0300 '/'

Reach 2R: stream reach

 Inflow Area =
 35.064 ac, Inflow Depth =
 0.72" for Q-100 event

 Inflow =
 17.90 cfs @
 12.19 hrs, Volume=
 2.101 af

 Outflow =
 15.21 cfs @
 12.29 hrs, Volume=
 2.101 af, Atten= 15%, Lag= 5.7 min

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Max. Velocity= 4.3 fps, Min. Travel Time= 6.7 min Avg. Velocity = 1.2 fps, Avg. Travel Time= 23.5 min

Peak Depth= 1.18' @ 12.29 hrs Capacity at bank full= 6.48 cfs 2.00' x 0.67' deep channel, n= 0.045 Winding stream, pools & shoals Side Slope Z-value= 1.0 '/' Top Width= 3.34' Length= 1,750.0' Slope= 0.0340 '/'

Type II 24-hr Q-100 Rainfall=5.20" Page 57

1/9/2007

Reach 3R: ex. roadside ditch

 Inflow Area =
 31.449 ac, Inflow Depth > 2.93" for Q-100 event

 Inflow =
 29.86 cfs @
 12.24 hrs, Volume=
 7.675 af

 Outflow =
 29.83 cfs @
 12.26 hrs, Volume=
 7.675 af, Atten= 0%, Lag= 0.7 min

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Max. Velocity= 9.1 fps, Min. Travel Time= 0.9 min Avg. Velocity = 2.6 fps, Avg. Travel Time= 3.0 min

Peak Depth= 0.87' @ 12.26 hrs Capacity at bank full= 91.77 cfs Inlet Invert= 200.00', Outlet Invert= 165.00' 2.00' x 1.50' deep channel, n= 0.030 Earth, grassed & winding Side Slope Z-value= 2.0 '/' Top Width= 8.00' Length= 470.0' Slope= 0.0745 '/'

Reach 4R: (S/N 001) 4' culvert under rt 7

Inflow Area	a =	93.942 ac, Inflow Depth = 1.58	" for Q-100 event
Inflow	=	63.85 cfs @ 12.23 hrs, Volume	= 12.354 af
Outflow	=	63.84 cfs @ 12.23 hrs, Volume	= 12.354 af, Atten= 0%, Lag= 0.3 min

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Max. Velocity= 8.0 fps, Min. Travel Time= 0.4 min Avg. Velocity = 2.2 fps, Avg. Travel Time= 1.4 min

Peak Depth= 2.42' @ 12.23 hrs Capacity at bank full= 94.11 cfs Inlet Invert= 160.00', Outlet Invert= 156.00' 48.0" Diameter Pipe, n= 0.030 Corrugated metal Length= 175.0' Slope= 0.0229 '/'

Reach sl: stone lined channel

 Inflow Area =
 21.172 ac, Inflow Depth > 3.73" for Q-100 event

 Inflow =
 22.98 cfs @ 12.72 hrs, Volume=
 6.579 af

 Outflow =
 22.98 cfs @ 12.73 hrs, Volume=
 6.579 af, Atten= 0%, Lag= 0.6 min

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Max. Velocity= 7.6 fps, Min. Travel Time= 0.8 min Avg. Velocity = 2.0 fps, Avg. Travel Time= 3.0 min

Peak Depth= 0.58' @ 12.73 hrs Capacity at bank full= 133.67 cfs Inlet Invert= 234.00', Outlet Invert= 190.00' 4.00' x 1.50' deep channel, n= 0.040 Earth, cobble bottom, clean sides Side Slope Z-value= 2.0 '/' Top Width= 10.00' Length= 365.0' Slope= 0.1205 '/'

Pond 1P: pond main pool

Inflow Area =	21.172 ac, Inflow Depth = 3.73"	for Q-100 event
Inflow =	55.03 cfs @ 12.02 hrs, Volume=	6.588 af
Outflow =	22.98 cfs @ 12.72 hrs, Volume=	6.579 af, Atten= 58%, Lag= 41.9 min
Primary =	22.98 cfs @ 12.72 hrs, Volume=	6.579 af
Secondary =	0.00 cfs @ 2.00 hrs, Volume=	0.000 af

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Starting Elev= 245.00' Surf.Area= 12,637 sf Storage= 36,029 cf Peak Elev= 250.86' @ 12.72 hrs Surf.Area= 25,470 sf Storage= 160,500 cf (124,471 cf above start) Plug-Flow detention time= 564.0 min calculated for 5.750 af (87% of inflow) Center-of-Mass det. time= 426.9 min (1,222.4 - 795.4)

Volume	Invert	Avail.	Storage	Storage	Description		
#1	240.00'	526	6,586 cf	Custom	n Stage Data (Pr	ismatic)Listed below (Recalc)	
Elevatio	on Si	ırf.Area	Inc	Store	Cum.Store		
(fee		(sq-ft)	-	c-feet)	(cubic-feet)		
240.0		4,312	(*****	0	0		
242.0		6,232	1	0,544	10,544		
244.0		8,623		4,855	25,399		
245.0		12,637		0,630	36,029		
245.8	50	17,255		7,473	43,502		
246.0	00	18,082		8,834	52,336		
248.0		21,523	3	9,605	91,941		
250.0		25,190		6,713	138,654		
262.0		29,084		5,644	464,298		
264.0	00	33,204	6	2,288	526,586		
Device	Routing	Invert	Outlet D	evices			
#1	Primary	245.00'	24.0" x	100.0' k	ong Culvert CP	P, square edge headwall, Ke= 0.500	
	- 5				2.00' S= 0.030		
			n= 0.013	3 Corrug	ated PE, smooth	n interior	
#2	Device 1	241.00'				projecting, no headwall, Ke= 0.900	
					3.00' S= -0.066	67 '/' Cc= 0.900	
		n= 0.01			smooth interior		
#3	Device 1	248.80'	-			ited to weir flow C= 0.600	
#4	Secondary	253.00'				-Crested Rectangular Weir	
						0 1.00 1.20 1.40 1.60	
			Coet. (E	nglish) 2	2.68 2.70 2.70	2.64 2.63 2.64 2.64 2.63	
Primary	Primary OutFlow Max=22.98 cfs @ 12.72 hrs HW=250.86' TW=234.58' (Dynamic Tailwater)						

Primary OutFlow Max=22.98 cfs @ 12.72 hrs HW=250.86' TW=234.58' (Dynamic Tailwater) 1=Culvert (Passes 22.98 cfs of 33.36 cfs potential flow) 2=Culvert (Inlet Controls 1.25 cfs @ 9.2 fps)

-3=Orifice/Grate (Orifice Controls 21.72 cfs @ 6.9 fps)

Secondary OutFlow Max=0.00 cfs @ 2.00 hrs HW=245.00' TW=234.00' (Dynamic Tailwater) 4=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 2P: forbay

Inflow Area =	18.714 ac, Inflow Depth > 3.99"	for Q-100 event
Inflow =	122.81 cfs @ 11.94 hrs, Volume=	6.221 af
Outflow =	51.99 cfs @ 12.04 hrs, Volume=	6.221 af, Atten= 58%, Lag= 6.2 min
Primary =	41.43 cfs @ 12.04 hrs, Volume=	6.104 af
Secondary =	10.56 cfs @ 12.04 hrs, Volume=	0.117 af

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Starting Elev= 264.00' Surf.Area= 2,724 sf Storage= 6,078 cf Peak Elev= 271.50' @ 12.04 hrs Surf.Area= 12,729 sf Storage= 68,811 cf (62,733 cf above start) Plug-Flow detention time= 35.4 min calculated for 6.082 af (98% of inflow) Center-of-Mass det. time= 11.0 min (792.1 - 781.1)

Volume	Invert	Avail.	Storage	Storage	Description		
#1	260.00'	7!	5,303 cf	Custom	n Stage Data (Pr	rismatic)Listed below (Re	calc)
-	0	C A		01			
Elevatio		Irf.Area		Store	Cum.Store		
(fee	et)	(sq-ft)	(Cubi	c-feet)	(cubic-feet)		
260.0	00	592		0	0		
262.0	00	1,381		1,973	1,973		
264.0	00	2,724		4,105	6,078		
264.5	50	5,101		1,956	8,034		
266.0	00	6,486		8,690	16,725		
268.0	00	8,531		15,017	31,742		
270.0	00	10,837		19,368	51,110		
272.0	00	13,356	2	24,193	75,303		
Device	Routing	Invert	Outlet [Devices			
#1	Primary	260.00'	24.0" >	(105.0' lo	ong Culvert CP	PP, square edge headwall,	Ke= 0.500
	-		Outlet I	nvert= 25	5.00' S= 0.047	6 '/' Cc= 0.900	
			n= 0.01	3 Corrug	ated PE, smoot	h interior	
#2	Device 1	264.00'	24.0" H	oriz. Ori	fice/Grate Lim	nited to weir flow C= 0.60	0
#3	Secondary	270.50'	4.0' lon	g x 15.0	' breadth Broad	d-Crested Rectangular W	eir
	-		Head (f	eet) 0.20	0.40 0.60 0.8	0 1.00 1.20 1.40 1.60	
			Coef. (E	English) 2	2.68 2.70 2.70	2.64 2.63 2.64 2.64 2.6	33
			,	2 /			
Primary	Primary OutFlow Max=41.42 cfs @ 12.04 hrs HW=271.50' TW=249.30' (Dynamic Tailwater)						

Primary OutFlow Max=41.42 cfs @ 12.04 hrs HW=271.50' TW=249.30' (Dynamic Tailwater) -1=Culvert (Passes 41.42 cfs of 49.01 cfs potential flow) -2=Orifice/Grate (Orifice Controls 41.42 cfs @ 13.2 fps)

Secondary OutFlow Max=10.47 cfs @ 12.04 hrs HW=271.50' TW=249.30' (Dynamic Tailwater) —3=Broad-Crested Rectangular Weir (Weir Controls 10.47 cfs @ 2.6 fps)

Pond CB41:

Inflow Area	=	1.810 ac, Inflow Depth = 4.5°	1" for Q-100 event
Inflow =	=	13.47 cfs @ 11.95 hrs, Volume	e= 0.680 af
Outflow =	=	13.47 cfs @ 11.95 hrs, Volume	e= 0.680 af, Atten= 0%, Lag= 0.0 min
Primary =	=	13.47 cfs @ 11.95 hrs, Volume	e= 0.680 af

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs

Peak Elev= 336.47' @ 12.01 hrs Flood Elev= 309.90' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (767.6 - 767.6)

Device	Routing	Invert	Outlet Devices
#1	Primary	304.73'	18.0" x 270.0' long line to DMH 5 CPP, square edge headwall, Ke= 0.500 Outlet Invert= 301.90' S= 0.0105 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior
Primary	OutFlow	Max=3.65 cf	s @ 11.95 hrs HW=326.36' TW=325.94' (Dynamic Tailwater)

1=line to DMH 5 (Outlet Controls 3.65 cfs @ 2.1 fps)

Pond CB62:

Inflow Area =	13.351 ac, Inflow Depth > 4.16"	for Q-100 event
Inflow =	89.07 cfs @ 11.95 hrs, Volume=	4.626 af
Outflow =	89.07 cfs @ 11.95 hrs, Volume=	4.626 af, Atten= 0%, Lag= 0.0 min
Primary =	89.07 cfs @ 11.95 hrs, Volume=	4.626 af

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 317.36' @ 11.96 hrs Flood Elev= 309.50' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (778.9 - 778.9)

Device	Routing	Invert	Outlet Devices
#1	Primary	297.90'	36.0" x 260.0' long line to CB 64 CPP, square edge headwall, Ke= 0.500 Outlet Invert= 296.87' S= 0.0040 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior

Primary OutFlow Max=82.16 cfs @ 11.95 hrs HW=316.39' TW=309.28' (Dynamic Tailwater) 1=line to CB 64 (Outlet Controls 82.16 cfs @ 11.6 fps)

Pond CB64:

Inflow Au Inflow Outflow Primary	= =	107.11 cfs @ 107.11 cfs @	Inflow Depth > 4.17" 11.94 hrs, Volume= 11.94 hrs, Volume= 11.94 hrs, Volume=	5.486 af 5.486 af,	t Atten= 0%, Lag= 0.0 min		
Peak Ele Flood El Plug-Flo	Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 309.50' @ 11.95 hrs Flood Elev= 309.50' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (778.5 - 778.5)						
Device	Routin	g Invert	Outlet Devices				

#1	Primary	296.82'	42.0" x 360.0' long	g storm line to CB 78

severance proposed SN 001 Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

CPP, square edge headwall, Ke= 0.500 Outlet Invert= 295.35' S= 0.0041 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior

Primary OutFlow Max=103.91 cfs @ 11.94 hrs HW=309.28' TW=302.70' (Dynamic Tailwater) -1=storm line to CB 78 (Outlet Controls 103.91 cfs @ 10.8 fps)

Pond CB79: line to pond

Inflow Area =	:	17.128 ac, Inflow Depth > 4.18" for Q-100 event	
Inflow =		117.15 cfs @ 11.94 hrs, Volume= 5.964 af	
Outflow =		117.15 cfs @ 11.94 hrs, Volume= 5.964 af, Atten= 0%, La	ag= 0.0 min
Primary =		117.15 cfs @ 11.94 hrs, Volume= 5.964 af	

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 302.75' @ 11.94 hrs Flood Elev= 310.50' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (778.2 - 778.2)

Device Routing Invert Outlet Devices	
#1 Primary 294.60' 42.0" x 115.0' long line to pond CPP, square edge headwall, Ke= 0.500 Outlet Invert= 271.60' S= 0.2000 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior	

Primary OutFlow Max=117.00 cfs @ 11.94 hrs HW=302.73' TW=269.98' (Dynamic Tailwater)

Pond DMH 5:

Inflow Area	=	2.753 ac, Inflow D	epth = 4.47"	for Q-100 event	
Inflow	=	19.80 cfs @ 11.96	hrs, Volume=	1.025 af	
Outflow	=	19.80 cfs @ 11.96	hrs, Volume=	1.025 af, 7	Atten= 0%, Lag= 0.0 min
Primary	=	19.80 cfs @ 11.96	hrs, Volume=	1.025 af	-

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 333.90' @ 12.00 hrs Flood Elev= 312.00' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (769.9 - 769.9)

Device	Routing	Invert	Outlet Devices
#1	Primary	301.19'	20.0" x 142.0' long Storm line to DMH 4 CPP, square edge headwall, Ke= 0.500 Outlet Invert= 300.61' S= 0.0041 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior

Primary OutFlow Max=1.65 cfs @ 11.96 hrs HW=327.38' TW=327.34' (Dynamic Tailwater) **1=Storm line to DMH 4** (Outlet Controls 1.65 cfs @ 0.8 fps)

Pond DMH1:

Inflow Area = 2.937 ac, Inflow Depth > 4.01" for Q-100 event Inflow = 19.99 cfs @ 11.93 hrs, Volume= 0.981 af 19.99 cfs @ 11.93 hrs, Volume= Outflow = 0.981 af, Atten= 0%, Lag= 0.0 min 19.99 cfs @ 11.93 hrs, Volume= Primary = 0.981 af Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 328.86' @ 11.98 hrs Flood Elev= 312.64' Plug-Flow detention time= (not calculated: outflow precedes inflow)

Center-of-Mass det. time= 0.0 min (774.8 - 774.8)

Device	Routing	Invert	Outlet Devices
<u></u> #1	Primary		20.0" x 251.0' long line to DMH 2 CPP, square edge headwall, Ke= 0.500 Outlet Invert= 299.63' S= 0.0244 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior

Primary OutFlow Max=12.52 cfs @ 11.93 hrs HW=322.40' TW=319.59' (Dynamic Tailwater) 1=line to DMH 2 (Outlet Controls 12.52 cfs @ 5.7 fps)

Pond DMH2:

Inflow Area =	12.038 ac, Inflow Depth > 4.14"	for Q-100 event
Inflow =	79.48 cfs @ 11.95 hrs, Volume=	4.158 af
Outflow =	79.48 cfs @ 11.95 hrs, Volume=	4.158 af, Atten= 0%, Lag= 0.0 min
Primary =	79.48 cfs @ 11.95 hrs, Volume=	4.158 af

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 325.22' @ 11.97 hrs Flood Elev= 313.20' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (779.2 - 779.2)

Device	Routing	Invert	Outlet Devices
#1	Primary	299.53'	36.0" x 432.0' long storm line to CB 62 CPP, square edge headwall, Ke= 0.500 Outlet Invert= 297.95' S= 0.0037 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior

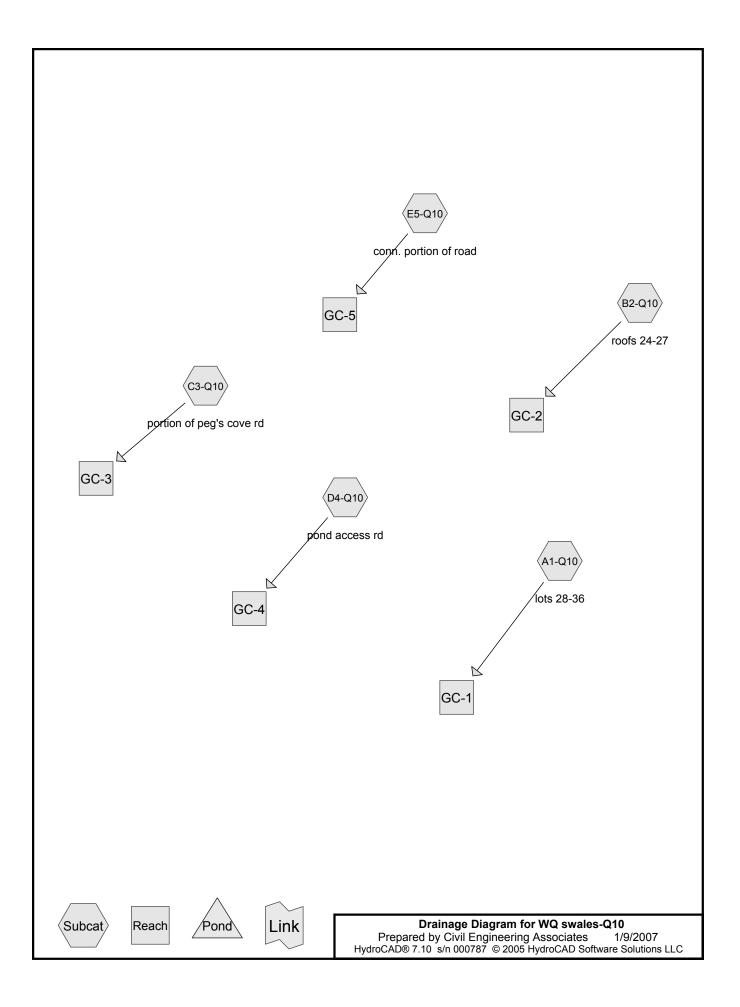
Primary OutFlow Max=66.91 cfs @ 11.95 hrs HW=322.81' TW=316.36' (Dynamic Tailwater) =1=storm line to CB 62 (Outlet Controls 66.91 cfs @ 9.5 fps)

Pond DMH3:

Inflow Area =	1.645 ac, Inflow Depth = 4.28 "	for Q-100 event
Inflow =	12.42 cfs @ 11.94 hrs, Volume=	0.587 af
Outflow =	12.42 cfs @ 11.94 hrs, Volume=	0.587 af, Atten= 0%, Lag= 0.0 min
Primary =	12.42 cfs @ 11.94 hrs, Volume=	0.587 af

Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 329.42' @ 11.98 hrs Flood Elev= 311.60' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (775.7 - 775.7)

Device	Routing	Invert	Outlet Devices
		301.60'	18.0" x 425.0' long storm line to DMH 2 CPP, square edge headwall, Ke= 0.500
			Outlet Invert= 299.63' S= 0.0046 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior


Primary OutFlow Max=7.92 cfs @ 11.94 hrs HW=324.57' TW=321.69' (Dynamic Tailwater) 1=storm line to DMH 2 (Outlet Controls 7.92 cfs @ 4.5 fps)

Pond DMH4:

Inflow Area = Inflow = Outflow = Primary =	4.491 ac, Inflow Depth = 4.2 29.78 cfs @ 11.97 hrs, Volum 29.78 cfs @ 11.97 hrs, Volum 29.78 cfs @ 11.97 hrs, Volum	e= 1.599 af e= 1.599 af, Atten= 0%, Lag= 0.0 min						
Routing by Dyn-Stor-Ind method, Time Span= 2.00-72.00 hrs, dt= 0.02 hrs Peak Elev= 330.55' @ 11.99 hrs Flood Elev= 313.20' Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.0 min (777.8 - 777.8)								
Device Routing	Invert Outlet Devices							

#1 Primary 300.36' **24.0" x 210.0' long line to DMH 2** CPP, square edge headwall, Ke= 0.500 Outlet Invert= 299.63' S= 0.0035 '/' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior

Primary OutFlow Max=24.63 cfs @ 11.97 hrs HW=328.74' TW=324.81' (Dynamic Tailwater) 1=line to DMH 2 (Outlet Controls 24.63 cfs @ 7.8 fps)

WQ swales-Q10 Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Softwar	Type II 24-hr Q-10 Rainfall=3.20" Page 2 Page 2 re Solutions LLC 1/9/2007						
Time span=2.00-22.00 hrs, dt=0.02 hrs, 1001 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method							
Subcatchment A1-Q10: lots 28-36 Flow Le	Runoff Area=12,458 sf Runoff Depth>1.55" ngth=36' Tc=2.8 min CN=83 Runoff=0.92 cfs 0.037 af						
Subcatchment B2-Q10: roofs 24-27 Flow Le	Runoff Area=0.190 ac Runoff Depth>1.41" ngth=56' Tc=3.5 min CN=81 Runoff=0.55 cfs 0.022 af						
Subcatchment C3-Q10: portion of peg's cove rd	Runoff Area=10,019 sf Runoff Depth>1.22" Tc=1.0 min CN=78 Runoff=0.62 cfs 0.023 af						
Subcatchment D4-Q10: pond access rd Flow Len	Runoff Area=8,498 sf Runoff Depth>1.22" gth=110' Tc=4.8 min CN=78 Runoff=0.46 cfs 0.020 af						
Subcatchment E5-Q10: conn. portion of road	Runoff Area=0.174 ac Runoff Depth>0.99" Tc=1.0 min CN=74 Runoff=0.38 cfs 0.014 af						
	C Depth=0.31' Max Vel=0.6 fps Inflow=0.92 cfs 0.037 af =0.0261 '/' Capacity=9.23 cfs Outflow=0.68 cfs 0.037 af						
	C Depth=0.19' Max Vel=0.5 fps Inflow=0.55 cfs 0.022 af 0.0250 '/' Capacity=11.36 cfs Outflow=0.45 cfs 0.022 af						
	C Depth=0.28' Max Vel=0.4 fps Inflow=0.62 cfs 0.023 af =0.0161 '/' Capacity=4.48 cfs Outflow=0.35 cfs 0.023 af						
	C Depth=0.24' Max Vel=0.6 fps Inflow=0.46 cfs 0.020 af =0.0308 '/' Capacity=6.19 cfs Outflow=0.37 cfs 0.020 af						
	C Depth=0.24' Max Vel=0.3 fps Inflow=0.38 cfs 0.014 af =0.0100 '/' Capacity=0.94 cfs Outflow=0.22 cfs 0.014 af						

Total Runoff Area = 1.075 ac Runoff Volume = 0.117 af Average Runoff Depth = 1.30"

Subcatchment A1-Q10: lots 28-36

Runoff = 0.92 cfs @ 11.94 hrs, Volume= 0.037 af, Depth> 1.55"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-22.00 hrs, dt= 0.02 hrs Type II 24-hr Q-10 Rainfall=3.20"

A	rea (sf)	CN	Description				
	4,922	98	98 Paved parking & roofs				
	7,536	74 :	>75% Gras	s cover, Go	bod, HSG C		
	12,458	83	Weighted A	verage			
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description		
0.1	20	0.3000	2.5		Sheet Flow,		
2.7	16	0.0200	0.1		Smooth surfaces $n= 0.011 P2= 2.30"$ Sheet Flow, Grass: Short $n= 0.150 P2= 2.30"$		
2.8	36	Total					

Subcatchment B2-Q10: roofs 24-27

Runoff = 0.55 cfs @ 11.94 hrs, Volume= 0.022 af, Depth> 1.41"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-22.00 hrs, dt= 0.02 hrs Type II 24-hr Q-10 Rainfall=3.20"

Area (a	ic) C	N Desc	cription				
0.0			ed parking				
0.13	<u>38 7</u>	<u>′4 >75%</u>	<u>% Grass co</u>	over, Good,	, HSG C		
0.19	0.190 81 Weighted Average						
	_ength	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
0.1	20	0.3000	2.5		Sheet Flow,		
3.4	36	0.0550	0.2		Smooth surfaces n= 0.011 P2= 2.30" Sheet Flow, Grass: Short n= 0.150 P2= 2.30"		
3.5	56	Total					

Subcatchment C3-Q10: portion of peg's cove rd

Runoff = 0.62 cfs @ 11.91 hrs, Volume= 0.023 af, Depth> 1.22"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-22.00 hrs, dt= 0.02 hrs Type II 24-hr Q-10 Rainfall=3.20"

Prepare		il Engiı	neering Ass ′87 © 2005 ⊦	Type II 24-hr Q-10 Rainfall=3.20"Page 4Software Solutions LLC1/9/2007		
۵	rea (sf)	CN	Description			
A	1,760	98	Paved park			
	8,259	74			ood, HSG C	
	10,019	78	Weighted A	verage		
Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)		
1.0					Direct Entry,	
			Subca	tchment	D4-Q10: pond access rd	
Runoff	=	0.46	cfs @ 11.9	6 hrs, Volu	ume= 0.020 af, Depth> 1.22"	
	y SCS TF 4-hr Q-10			CS, Time S	Span= 2.00-22.00 hrs, dt= 0.02 hrs	
A	rea (sf)	CN	Description			
	2,160	89	Gravel road	,		
	6,338	74			ood, HSG C	
	8,498	78	Weighted A	verage		
Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)		
3.8	30	0.030	0 0.1		Sheet Flow,	
1.0	80	0.050	0 1.3	4.28	Grass: Short n= 0.150 P2= 2.30" Trap/Vee/Rect Channel Flow, Bot.W=2.00' D=0.75' Z= 3.0 '/' Top.W=6.50' n= 0.150	
4.8	110	Total				
			Subcatch	iment E5	5-Q10: conn. portion of road	
Runoff	=	0.38	cfs @ 11.9	2 hrs, Volu	ume= 0.014 af, Depth> 0.99"	
Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-22.00 hrs, dt= 0.02 hrs Type II 24-hr Q-10 Rainfall=3.20"						
Area (ac) CN Description						
0.	.061 9	98 Pa	ved parking			
			5% Grass c eighted Aver		I, HSG B	
0.	. 174 /	4 VV	eiginted Avel	aye		
Tc (min)	Length (feet)	Slop (ft/f		Capacity (cfs)		
1.0					Direct Entry,	

Reach GC-1:

 Inflow Area =
 0.286 ac, Inflow Depth > 1.55" for Q-10 event

 Inflow =
 0.92 cfs @ 11.94 hrs, Volume=
 0.037 af

 Outflow =
 0.68 cfs @ 11.98 hrs, Volume=
 0.037 af, Atten= 26%, Lag= 2.8 min

Routing by Dyn-Stor-Ind method, Time Span= 2.00-22.00 hrs, dt= 0.02 hrs Max. Velocity= 0.6 fps, Min. Travel Time= 6.9 min Avg. Velocity = 0.2 fps, Avg. Travel Time= 21.2 min

Peak Depth= 0.31' @ 11.98 hrs Capacity at bank full= 9.23 cfs Inlet Invert= 311.00', Outlet Invert= 305.00' 2.00' x 1.00' deep channel, n= 0.150 Side Slope Z-value= 10.0 3.0 '/' Top Width= 15.00' Length= 230.0' Slope= 0.0261 '/'

Reach GC-2:

Inflow Area =	0.190 ac, Inflow Depth > 1.41"	for Q-10 event
Inflow =	0.55 cfs @ 11.94 hrs, Volume=	0.022 af
Outflow =	0.45 cfs @ 11.98 hrs, Volume=	0.022 af, Atten= 18%, Lag= 2.4 min

Routing by Dyn-Stor-Ind method, Time Span= 2.00-22.00 hrs, dt= 0.02 hrs Max. Velocity= 0.5 fps, Min. Travel Time= 5.1 min Avg. Velocity = 0.1 fps, Avg. Travel Time= 18.2 min

Peak Depth= 0.19' @ 11.98 hrs Capacity at bank full= 11.36 cfs Inlet Invert= 311.00', Outlet Invert= 307.50' 4.00' x 1.00' deep channel, n= 0.150 Side Slope Z-value= 8.0 4.0 '/' Top Width= 16.00' Length= 140.0' Slope= 0.0250 '/'

Reach GC-3:

 Inflow Area =
 0.230 ac, Inflow Depth > 1.22" for Q-10 event

 Inflow =
 0.62 cfs @ 11.91 hrs, Volume=
 0.023 af

 Outflow =
 0.35 cfs @ 11.97 hrs, Volume=
 0.023 af, Atten= 43%, Lag= 3.5 min

Routing by Dyn-Stor-Ind method, Time Span= 2.00-22.00 hrs, dt= 0.02 hrs Max. Velocity= 0.4 fps, Min. Travel Time= 11.6 min Avg. Velocity = 0.1 fps, Avg. Travel Time= 34.5 min

Peak Depth= 0.28' @ 11.97 hrs Capacity at bank full= 4.48 cfs Inlet Invert= 311.00', Outlet Invert= 306.00' $2.00' \times 1.00'$ deep channel, n= 0.150Side Slope Z-value= 3.0'/' Top Width= 8.00'Length= 310.0' Slope= 0.0161'/'

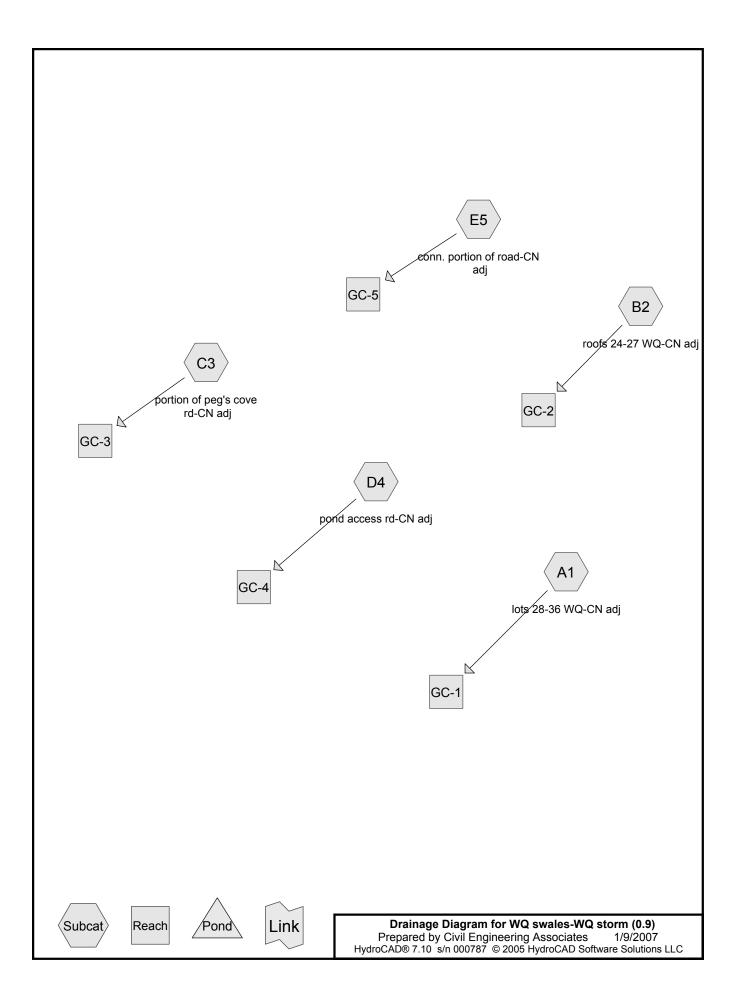
Reach GC-4:

 Inflow Area =
 0.195 ac, Inflow Depth > 1.22" for Q-10 event

 Inflow =
 0.46 cfs @ 11.96 hrs, Volume=
 0.020 af

 Outflow =
 0.37 cfs @ 12.01 hrs, Volume=
 0.020 af, Atten= 20%, Lag= 2.7 min

Routing by Dyn-Stor-Ind method, Time Span= 2.00-22.00 hrs, dt= 0.02 hrs Max. Velocity= 0.6 fps, Min. Travel Time= 5.7 min Avg. Velocity = 0.2 fps, Avg. Travel Time= 18.7 min


Peak Depth= 0.24' @ 12.01 hrs Capacity at bank full= 6.19 cfs Inlet Invert= 304.00', Outlet Invert= 298.00' $2.00' \times 1.00'$ deep channel, n= 0.150Side Slope Z-value= 3.0'/' Top Width= 8.00'Length= 195.0' Slope= 0.0308'/'

Reach GC-5:

Inflow Area	=	0.174 ac, Inflow Depth > 0.99"	for Q-10 event	
Inflow	=	0.38 cfs @ 11.92 hrs, Volume=	0.014 af	
Outflow	=	0.22 cfs @ 11.97 hrs, Volume=	0.014 af,	Atten= 43%, Lag= 3.5 min

Routing by Dyn-Stor-Ind method, Time Span= 2.00-22.00 hrs, dt= 0.02 hrs Max. Velocity= 0.3 fps, Min. Travel Time= 10.7 min Avg. Velocity = 0.1 fps, Avg. Travel Time= 30.2 min

Peak Depth= 0.24' @ 11.97 hrs Capacity at bank full= 0.94 cfs Inlet Invert= 311.00', Outlet Invert= 309.00' 2.00' x 0.50' deep channel, n= 0.150 Side Slope Z-value= 3.0 5.0 '/' Top Width= 6.00' Length= 200.0' Slope= 0.0100 '/'

WQ swales-WQ storm (0.9) Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solu	Type II 24-hr WQv-0.9" Rainfall=0.90" Page 2 1/9/2007
Time span=2.00-22.00 hrs, dt=0 Runoff by SCS TR-20 me Reach routing by Dyn-Stor-Ind method - Por	thod, UH=SCS
Subcatchment A1: lots 28-36 WQ-CN adj Flow Length=	Runoff Area=0.286 ac Runoff Depth>0.36" 36' Tc=2.8 min CN=93 Runoff=0.22 cfs 0.009 af
Subcatchment B2: roofs 24-27 WQ-CN adj Flow Length=	Runoff Area=8,261 sf Runoff Depth>0.24" 56' Tc=3.5 min CN=90 Runoff=0.09 cfs 0.004 af
Subcatchment C3: portion of peg's cove rd-CN adj	Runoff Area=0.230 ac Runoff Depth>0.19" Tc=1.0 min CN=88 Runoff=0.09 cfs 0.004 af
Subcatchment D4: pond access rd-CN adj Flow Length=1	Runoff Area=8,498 sf Runoff Depth>0.24" 10' Tc=4.8 min CN=90 Runoff=0.09 cfs 0.004 af
Subcatchment E5: conn. portion of road-CN adj	Runoff Area=0.174 ac Runoff Depth>0.32" Tc=1.0 min CN=92 Runoff=0.12 cfs 0.005 af
• • •	th=0.13' Max Vel=0.3 fps Inflow=0.22 cfs 0.009 af 61 '/' Capacity=9.23 cfs Outflow=0.13 cfs 0.008 af
•	th=0.06' Max Vel=0.2 fps Inflow=0.09 cfs 0.004 af 0 '/' Capacity=11.36 cfs Outflow=0.06 cfs 0.004 af
• • • •	th=0.06' Max Vel=0.2 fps Inflow=0.09 cfs 0.004 af 61 '/' Capacity=4.48 cfs Outflow=0.03 cfs 0.003 af
•	th=0.08' Max Vel=0.3 fps Inflow=0.09 cfs 0.004 af 08 '/' Capacity=6.19 cfs Outflow=0.06 cfs 0.004 af
· · · · · ·	th=0.11' Max Vel=0.2 fps Inflow=0.12 cfs 0.005 af 00 '/' Capacity=0.94 cfs Outflow=0.06 cfs 0.004 af

Total Runoff Area = 1.075 ac Runoff Volume = 0.025 af Average Runoff Depth = 0.27"

Subcatchment A1: lots 28-36 WQ-CN adj

Runoff = 0.22 cfs @ 11.94 hrs, Volume= 0.009 af, Depth> 0.36"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-22.00 hrs, dt= 0.02 hrs Type II 24-hr WQv-0.9" Rainfall=0.90"

Area	(ac) C	N Des	cription		
0.	113 9	3 roofs	S		
0.	<u>173 9</u>	93 lawn			
0.	286 9	3 Weig	ghted Aver	age	
			-	-	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
0.1	20	0.3000	2.5		Sheet Flow,
					Smooth surfaces n= 0.011 P2= 2.30"
2.7	16	0.0200	0.1		Sheet Flow,
					Grass: Short n= 0.150 P2= 2.30"
2.8	36	Total			

Subcatchment B2: roofs 24-27 WQ-CN adj

Runoff = 0.09 cfs @ 11.95 hrs, Volume= 0.004 af, Depth> 0.24"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-22.00 hrs, dt= 0.02 hrs Type II 24-hr WQv-0.9" Rainfall=0.90"

_	A	rea (sf)	CN	Description			
		2,250	90	roofs			
_		6,011	90 >75% Grass cover, Good, HSG C				
		8,261	3,261 90 Weighted Average				
	-		0	N / 1 · · ·	0		
	Tc	Length	Slope		Capacity	Description	
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
	0.1	20	0.3000) 2.5		Sheet Flow,	
						Smooth surfaces n= 0.011 P2= 2.30"	
	3.4	36	0.0550	0.2		Sheet Flow,	
						Grass: Short n= 0.150 P2= 2.30"	
-	3.5	56	Total				

Subcatchment C3: portion of peg's cove rd-CN adj

Runoff = 0.09 cfs @ 11.92 hrs, Volume= 0.004 af, Depth> 0.19"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-22.00 hrs, dt= 0.02 hrs Type II 24-hr WQv-0.9" Rainfall=0.90" WQ swales-WQ storm (0.9)

Type II 24-hr WQv-0.9" Rainfall=0.90" Page 4

1/9/2007

Prepared by Civil Engineering Associates HydroCAD® 7.10 s/n 000787 © 2005 HydroCAD Software Solutions LLC

Area (a	ac) C	N Des	cription					
0.0	040 8	8 Pave	Paved parking & roofs					
0.1	190 8	8 >75	% Grass co	over, Good	, HSG C			
0.230 88 Weighted Average								
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
1.0					Direct Entry,			
	Subcatchment D4: pond access rd-CN adj							

Runoff = 0.09 cfs @ 11.97 hrs, Volume= 0.004 af, Depth> 0.24"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-22.00 hrs, dt= 0.02 hrs Type II 24-hr WQv-0.9" Rainfall=0.90"

A	rea (sf)	CN I	Description		
	2,160	90 (Gravel road		
	6,338	90 ;	>75% Gras	s cover, Go	ood, HSG C
	8,498 90 Weighted Average				
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
3.8	30	0.0300	0.1		Sheet Flow,
1.0	80	0.0500	1.3	4.28	Grass: Short n= 0.150 P2= 2.30" Trap/Vee/Rect Channel Flow, Bot.W=2.00' D=0.75' Z= 3.0 '/' Top.W=6.50' n= 0.150
4.8	110	Total			

Subcatchment E5: conn. portion of road-CN adj

Runoff = 0.12 cfs @ 11.92 hrs, Volume= 0.005 af, Depth> 0.32"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 2.00-22.00 hrs, dt= 0.02 hrs Type II 24-hr WQv-0.9" Rainfall=0.90"

A	Area	(ac)	CN	Desc	cription				
	0.	061	92						
	0.	113	92 >7	>75%	>75% Grass cover, Good, HSG B				
	0.174 92 Weighted Average								
	Тс	Leng	th	Slope	Velocity	Capacity	Description		
(n	nin)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)			
	1.0						Direct Entry,		

Reach GC-1:

 Inflow Area =
 0.286 ac, Inflow Depth > 0.36"
 for WQv-0.9" event

 Inflow =
 0.22 cfs @
 11.94 hrs, Volume=
 0.009 af

 Outflow =
 0.13 cfs @
 12.00 hrs, Volume=
 0.008 af, Atten= 39%, Lag= 3.7 min

Routing by Dyn-Stor-Ind method, Time Span= 2.00-22.00 hrs, dt= 0.02 hrs Max. Velocity= 0.3 fps, Min. Travel Time= 11.1 min Avg. Velocity = 0.1 fps, Avg. Travel Time= 32.3 min

Peak Depth= 0.13' @ 12.00 hrs Capacity at bank full= 9.23 cfs Inlet Invert= 311.00', Outlet Invert= 305.00' 2.00' x 1.00' deep channel, n= 0.150 Side Slope Z-value= 10.0 3.0 '/' Top Width= 15.00' Length= 230.0' Slope= 0.0261 '/'

Reach GC-2:

Inflow Area =	0.190 ac, Inflow Depth > 0.24"	for WQv-0.9" event
Inflow =	0.09 cfs @ 11.95 hrs, Volume=	0.004 af
Outflow =	0.06 cfs @ 12.01 hrs, Volume=	0.004 af, Atten= 40%, Lag= 3.8 min

Routing by Dyn-Stor-Ind method, Time Span= 2.00-22.00 hrs, dt= 0.02 hrs Max. Velocity= 0.2 fps, Min. Travel Time= 10.4 min Avg. Velocity = 0.1 fps, Avg. Travel Time= 28.3 min

Peak Depth= 0.06' @ 12.01 hrs Capacity at bank full= 11.36 cfs Inlet Invert= 311.00', Outlet Invert= 307.50' 4.00' x 1.00' deep channel, n= 0.150 Side Slope Z-value= 8.0 4.0 '/' Top Width= 16.00' Length= 140.0' Slope= 0.0250 '/'

Reach GC-3:

 Inflow Area =
 0.230 ac, Inflow Depth > 0.19"
 for WQv-0.9" event

 Inflow =
 0.09 cfs @
 11.92 hrs, Volume=
 0.004 af

 Outflow =
 0.03 cfs @
 12.01 hrs, Volume=
 0.003 af, Atten= 73%, Lag= 5.3 min

Routing by Dyn-Stor-Ind method, Time Span= 2.00-22.00 hrs, dt= 0.02 hrs Max. Velocity= 0.2 fps, Min. Travel Time= 27.9 min Avg. Velocity = 0.1 fps, Avg. Travel Time= 59.5 min

Peak Depth= 0.06' @ 12.01 hrs Capacity at bank full= 4.48 cfs Inlet Invert= 311.00', Outlet Invert= 306.00' 2.00' x 1.00' deep channel, n= 0.150 Side Slope Z-value= 3.0'/ Top Width= 8.00' Length= 310.0' Slope= 0.0161'/

Reach GC-4:

 Inflow Area =
 0.195 ac, Inflow Depth >
 0.24" for WQv-0.9" event

 Inflow =
 0.09 cfs @
 11.97 hrs, Volume=
 0.004 af

 Outflow =
 0.06 cfs @
 12.03 hrs, Volume=
 0.004 af, Atten= 39%, Lag= 4.1 min

Routing by Dyn-Stor-Ind method, Time Span= 2.00-22.00 hrs, dt= 0.02 hrs Max. Velocity= 0.3 fps, Min. Travel Time= 10.7 min Avg. Velocity = 0.1 fps, Avg. Travel Time= 30.7 min

Peak Depth= 0.08' @ 12.03 hrs Capacity at bank full= 6.19 cfs Inlet Invert= 304.00', Outlet Invert= 298.00' 2.00' x 1.00' deep channel, n= 0.150 Side Slope Z-value= 3.0 '/' Top Width= 8.00' Length= 195.0' Slope= 0.0308 '/'

Reach GC-5:

Inflow Are	a =	0.174 ac, Inflow Depth > 0.32" for WQv-0.9" event	
Inflow	=	0.12 cfs @ 11.92 hrs, Volume= 0.005 af	
Outflow	=	0.06 cfs @ 11.98 hrs, Volume= 0.004 af, Atten= 53%, Lag= 4.1 min	۱

Routing by Dyn-Stor-Ind method, Time Span= 2.00-22.00 hrs, dt= 0.02 hrs Max. Velocity= 0.2 fps, Min. Travel Time= 16.2 min Avg. Velocity = 0.1 fps, Avg. Travel Time= 46.4 min

Peak Depth= 0.11' @ 11.98 hrs Capacity at bank full= 0.94 cfs Inlet Invert= 311.00', Outlet Invert= 309.00' 2.00' x 0.50' deep channel, n= 0.150 Side Slope Z-value= 3.0 5.0 '/' Top Width= 6.00' Length= 200.0' Slope= 0.0100 '/'

IRELAND DEVELOPMENT, LLC

SEVERANCE ROAD PUD TRAFFIC IMPACT STUDY

DRAFT | June 20, 2019

PREPARED FOR: IRELAND DEVELOPMENT, LLC

180 Battery Street, Suite 350 Burlington, VT 05401 802.383.0118 www.rsginc.com

SUBMITTED BY: RSG

CONTENTS

1.0 EXECUTIVE SUMMARY	1
2.0 GEOGRAPHIC AND SCENARIO SCOPE	2
3.0 EXISTING TRAFFIC VOLUMES	4
3.1 EXISTING ROADWAY BACKGROUND	4
3.2 TRAFFIC COUNTS	4
3.3 ADJUSTMENTS TO OBSERVED VOLUMES	5
3.4 OTHER DEVELOPMENT VOLUMES	7
SEVERANCE CORNERS VILLAGE DEVELOPMENT	8
OWLS GLEN PUD	8
ODV TRIP DISTRIBUTION	
3.5 NO BUILD SCENARIO VOLUMES	10
4.0 PROPOSED DEVELOPMENT VOLUMES	12
4.1 SRPUD TRIP DISTRIBUTION	13
4.1 SRPUD TRIP DISTRIBUTION 4.2 BUILD SCENARIO VOLUMES	-
	16
4.2 BUILD SCENARIO VOLUMES	
4.2 BUILD SCENARIO VOLUMES	16 18 18
4.2 BUILD SCENARIO VOLUMES	16 18 18
 4.2 BUILD SCENARIO VOLUMES 5.0 CONGESTION ANALYSIS 5.1 LEVEL-OF-SERVICE DEFINITION 5.2 TRAFFIC MODELING SCENARIOS 	
4.2 BUILD SCENARIO VOLUMES	
 4.2 BUILD SCENARIO VOLUMES 5.0 CONGESTION ANALYSIS 5.1 LEVEL-OF-SERVICE DEFINITION 5.2 TRAFFIC MODELING SCENARIOS 6.0 CRASH REVIEW AND SAFETY ANALYSIS 6.1 CRASH HISTORIES 	
 4.2 BUILD SCENARIO VOLUMES 5.0 CONGESTION ANALYSIS 5.1 LEVEL-OF-SERVICE DEFINITION 5.2 TRAFFIC MODELING SCENARIOS 6.0 CRASH REVIEW AND SAFETY ANALYSIS 6.1 CRASH HISTORIES 6.2 SIGHT DISTANCE OBSERVATIONS 	

LIST OF FIGURES

FIGURE 1: LOCATION OF SRPUD AND TIS STUDY INTERSECTIONS IN	
COLCHESTER, VERMONT.	2
COLCHESTER, VERMONT FIGURE 2: SRPUD SITE PLAN	2
FIGURE 3: PROPOSED COLCHESTER STPG 5600(17) INTERSECTION	
IMPROVEMENTS.	3
FIGURE 4: A.M. AND P.M. PEAK HOUR TURNING MOVEMENT COUNTS AS	
OBSERVED	5
OBSERVED FIGURE 5: 2020 ADJUSTED PEAK HOUR TURNING MOVEMENT VOLUMES	7
FIGURE 6: OTHER DEVELOPMENTS NEAR SEVERANCE ROAD PUD	8
FIGURE 7: TOTAL ODV TRIPS ASSOCIATED WITH CONTINUED	
DEVELOPMENT OF THE SERVERANCE CORNERS VILLAGE CENTER	
AND OWLS GLEN PUD	9
FIGURE 8: 2020 NO BUILD SCENARIO VOLUMES FOR THE AM AND PM	
PEAK HOURS FIGURE 9: 2025 NO BUILD SCENARIO VOLUMES FOR THE AM AND PM	10
FIGURE 9: 2025 NO BUILD SCENARIO VOLUMES FOR THE AM AND PM	
PEAK HOURS	11
FIGURE 10: BUILDING NUMBERS WITHIN SRPUD.	13
FIGURE 11: ESTIMATED TRIP DISTRIBUTION RESULTING FROM	
PROPOSED SRPUD	
FIGURE 12: 2020 BUILD SCENARIO VOLUMES FROM PROPOSED SRPUD	16
FIGURE 13: 2025 BUILD SCENARIO VOLUMES FROM PROPOSED SRPUD	17
FIGURE 14: REPORTED CRASHES BETWEEN JANUARY 1, 2014 THROUGH	
DECEMBER 31, 2018 ON SEVERANCE ROAD BETWEEN US-2/7 AND A	
POINT APPROXIMATELY 500 FEET EAST OF THE SRPUD	22
FIGURE 15: INTERSECTION SIGHT DISTANCE VIEWS TO THE WEST	
(LEFT) AND EAST (RIGHT) NEAR PROPOSED SHEA DRIVE ON	
SEVERANCE ROAD	25

LIST OF TABLES

TABLE 1: ESTIMATED OWLS GLEN TRIP GENERATION.	9
TABLE 2: AM PEAK AND PM PEAK TRIP GENEREATION ESTIMATES FOR	
SRPUD	12
TABLE 3: AM PEAK HOUR ENTERING AND EXITING TRIP DISTRIBUTION	
FROM SRPUD, WITH 4% TDM CREDIT APPLIED.	13
TABLE 4: PM PEAK HOUR ENTERING AND EXITING TRIP DISTRIBUTION	
FROM SRPUD, WITH 4% TDM CREDIT APPLIED.	14
TABLE 5: LEVEL-OF-SERVICE CRITERIA FOR SIGNALIZED AND	
UNSIGNALIZED INTERSECTIONS	18
TABLE 6: AM PEAK HOUR PERFORMANCE RESULTS FOR THE BASE	
YEAR (2020) AND FUTURE YEAR (2025)	19
TABLE 7: PM PEAK HOUR PERFORMANCE RESULTS FOR THE BASE	
YEAR (2020) AND FUTURE YEAR (2025)	20
TABLE 8: SIMTRAFFIC QUEUING ANALYSIS RESULTS, REPORTED IN	
NUMBER OF VEHICLES.	21
TABLE 9: RESULTS OF LEFT TURN LANE WARRANT ANALYSIS	
ASSUMING 90% OF WESTBOUND LEFT TURNING VEHICLES USE	
ONE DRIVE (LEFT) AND THE WESTBOUND LEFTS USE BOTH DRIVES	
EQUALLY (RIGHT, FILLED GREY)	26

LIST OF APPENDICES

A: Severance Corners Village Center Traffic Update Memo

- B: SRPUD Trip Generation Worksheet
- C: Volume Development and Trip Distribution Worksheets
- D: Internal Capture Worksheet
- E: Synchro / SimTraffic Reports

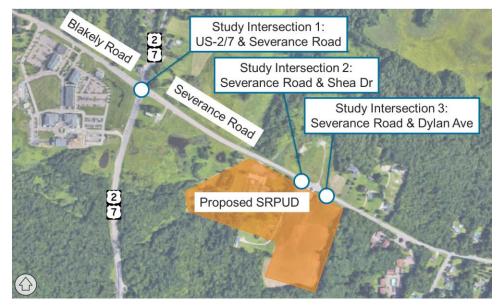
1.0 EXECUTIVE SUMMARY

RSG has completed a traffic analysis of the existing road network in Colchester adjacent to the proposed Severance Road Planned Use Development (SRPUD). This memorandum documents the analysis and results of the expected traffic impacts as a result of the proposed development.

This Traffic Impact Study (TIS) includes the following sections:

- 1. Geographic and Scenario Scope
- 2. Existing Traffic Volumes
- 3. Proposed Development Trip Generation and Distribution
- 4. Congestion Analysis
- 5. Turn Lane Warrant Analysis
- 6. Crash Review and Safety Analysis
- 7. Summary of Analysis

Summary:


- RSG evaluated the a.m. and p.m. peak hour traffic operations at three intersections (Severance Road at US-2/7, Shea Drive (western driveway), and Dylan Avenue (eastern driveway)) and two design years (2020 and 2025) in the build and no-build conditions.
- SRPUD is forecast to generate 145 and 157 new external trips in the a.m. and p.m. peak hours, respectively.
- Both driveway entrances into the proposed development from Severance Road, Shea Drive and Dylan Avenue, are proposed as full access (all turning movements allowed). The driveways are not expected to interact with any adjacent intersections or queues.
- The driveway entrances at Shea Drive and Dylan Avenue are expected to operate acceptably in all analyzed base and future peak hour periods.
- The additional trips generated by the SRPUD will add traffic to the congested US-2/7 / Blakely Road / Severance Road intersection with increases to delay in both the a.m. and p.m. peak hours. The proposed Severance Corners Intersection Project COLCHESTER STPG 5600(17) is expected to greatly increase intersection capacity.
- A westbound left turn from Severance Road is warranted into the development and recommended due to existing history of rear end crashes along Severance Road. RSG recommends the location of the westbound left turn lane at Shea Drive.

2.0 GEOGRAPHIC AND SCENARIO SCOPE

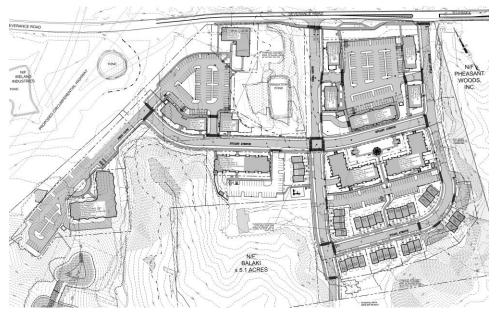

The location of the proposed SRPUD is approximately 1500 feet east of US Route 2/7 (US-2/7) along Severance Road in Colchester, Vermont.

FIGURE 1: LOCATION OF SRPUD AND TIS STUDY INTERSECTIONS IN COLCHESTER, VERMONT.

The SRPUD site plan is illustrated in Figure 2.

FIGURE 2: SRPUD SITE PLAN.

This TIS focuses on the two proposed full-access (all turning movements allowed) driveways along Severance Road. The TIS also reviews potential interactions with the site driveways and queues associated with the US-2/7 intersection. The west driveway, Shea Drive, is located approximately 1,650 feet east of the US-2/7 intersection, while the eastern driveway, Dylan Avenue, is located approximately 400 feet further east along Severance Road.

VTrans is planning improvements to the US-2/7 intersection under project COLCHESTER STPG 5600(17). The latest Statewide Transportation Improvement Plan (STIP) identifies the construction year for these improvements in Fiscal Year 2022.

FIGURE 3: PROPOSED COLCHESTER STPG 5600(17) INTERSECTION IMPROVEMENTS.

Typically, a TIS assesses the a.m. and p.m. peak hour traffic conditions in the proposed build year, and five years after buildout. This TIS analyzes conditions in the year 2020 and 2025. Given construction of these intersection improvements is expected in 2022, the 2025 analysis will assume the intersection is constructed as designed with associated capacity improvements.

3.0 EXISTING TRAFFIC VOLUMES

This study relies upon design standards and analysis procedures documented in the Highway Capacity Manual 6th Edition,¹ Trip Generation,² A Policy on Geometric Design of Highways and Streets,³ Manual on Uniform Traffic Control Devices (MUTCD),⁴ Traffic Impact Evaluation: Study and Review Guide,⁵ and the Vermont State Design Standards,⁶ which are the generally accepted traffic analysis references relied upon by traffic engineering professionals and VTrans for projects of this type in Vermont.

VTrans guidelines specify that a traffic study should be considered if the proposed development will generate 75 or more peak hour trips. The geographic scope of the study should also include the immediate access points and those intersections or highway segments receiving 75 or more project-generated peak hour trips.⁷

3.1 EXISTING ROADWAY BACKGROUND

US-2/7 is a State Highway under VTrans jurisdiction with a speed limit of 40 mph. Severance Road (TH-7, MA S5616) and Blakely Road (TH-9, MA S5600) are Class 2 town highways, classified as minor arterials, both with a speed limit of 35 mph.

3.2 TRAFFIC COUNTS

The study area includes the three intersections depicted in Figure 1. RSG compiled the traffic volumes for the US-2/7 & Severance Road intersection from an intersection count conducted by VTrans. The 6 a.m. – 12 p.m. count was conducted on Tuesday, June 12, 2018, and the 12 p.m. – 6 p.m. count was conducted on Monday, June 11, 2018.

⁷ Vermont Agency of Transportation, Development Review Section, *Traffic Impact Evaluation Study and* Review Guide (October 2008).

¹ Transportation Research Board, National Research Council, *Highway Capacity Manual* (Washington, DC: National Academy of Sciences, 2010).

² Institute of Transportation Engineers, *Trip Generation* 10th Edition (Washington, D.C.: Institute of Transportation Engineers, 2017).

³ American Association of State Highway and Transportation Officials (AASHTO), A Policy on Geometric Design of Highways and Streets, 7th Edition (Washington DC: AASHTO, 2018).

⁴ American Traffic Safety Services Association (ATSSA), ITE, and AASHTO, Manual on Uniform Traffic Control Devices, 2009 Edition (Washington DC: FHWA, 2009).

⁵ Vermont Agency of Transportation, Development Review Section, Traffic Impact Evaluation Study and Review Guide (October 2008).

⁶ State of Vermont Agency of Transportation, Vermont State Standards (Montpelier: VTrans, 1 July 1997).

The a.m. and p.m. peak hour turning movements as observed (unadjusted) on the date of the counts are illustrated in Figure 4. The a.m. peak hour was observed between 7:15 a.m. - 8:15 a.m., and the p.m. peak hour was observed between 4:30 p.m. and 5:30 p.m.

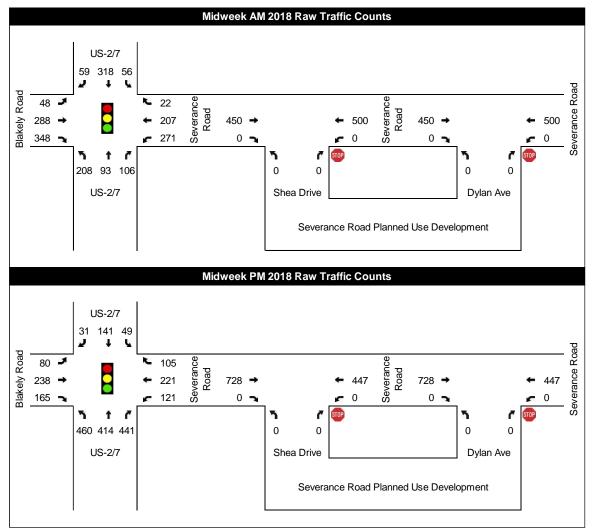
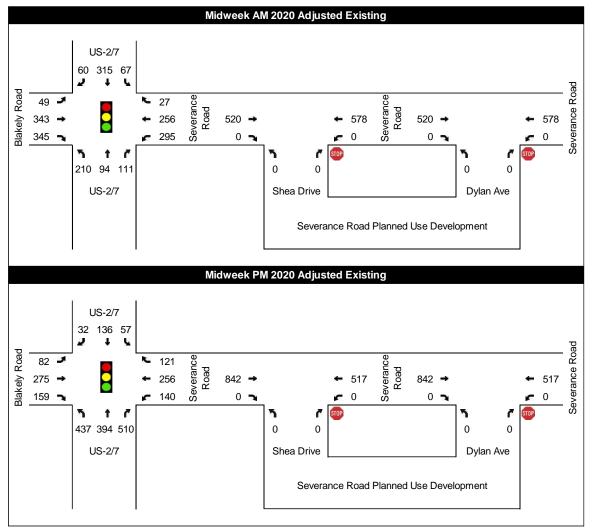


FIGURE 4: A.M. AND P.M. PEAK HOUR TURNING MOVEMENT COUNTS AS OBSERVED.

3.3 ADJUSTMENTS TO OBSERVED VOLUMES

RSG applied the following adjustments to the observed traffic volumes at the US-2/7 and Severance Road intersection:

 The design hour volume (DHV) adjustment factor is based on VTrans continuous traffic counter (CTC) station D040 located approximately ½ mile south of Severance Road along US-2/7. RSG compared the 2018 DHV at this station to the southbound (SB) exiting and northbound (NB) entering peak hour volumes of the turning movement count to formulate DHV adjustments. DHV adjustments change raw count volumes by +1%.


 The VTrans Redbook estimates regional background traffic growth factor of +1% from 2018 to 2020, and +3% from 2018 to 2025.

The total US-2/7 and Severance Road intersection adjustment from 2018 observed traffic volumes to 2020 adjusted traffic volumes is +2%.

RSG applied the following adjustments to the observed traffic volumes along Severance Road:

- The design hour volume (DHV) adjustment factor is based on VTrans automatic traffic recorder (CTC) station D519 located approximately ½ mile east of US-2/7 along Severance Road. RSG compared the 2016 DHV at this station to the eastbound (EB) exiting and westbound (WB) entering peak hour volumes of the turning movement count to formulate DHV adjustments. DHV adjustments change raw count volumes by +13%.
- 2. The VTrans Redbook estimates regional background traffic growth factor of +2% from 2016 to 2020, and +4% from 2016 to 2025.

The total Severance Road adjustment from 2018 observed traffic volumes to 2020 adjusted traffic volumes is +16%. RSG balanced the contributing Severance Road approach volumes within the US-2/7 intersection to maintain consistency with CTC D040. This resulted in a net increase of +24 trips and +84 trips through the US-2/7 intersection in the a.m. and p.m. peak hours, respectively.

FIGURE 5: 2020 ADJUSTED PEAK HOUR TURNING MOVEMENT VOLUMES.

3.4 OTHER DEVELOPMENT VOLUMES

Other development volumes (ODVs) represent trips generated by anticipated developments in the study area. Trips generated by ODVs are included in all future scenarios. The Town of Colchester has highlighted two other developments in the area that may impact traffic volumes by 2020: continued development within Severance Corners Village Center, and the Owls Glen PUD. These two developments are illustrated in Figure 6.

IRELAND DEVELOPMENT, LLC

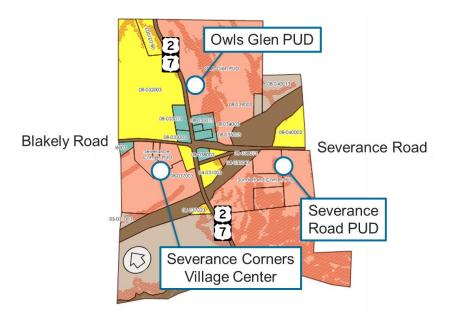


FIGURE 6: OTHER DEVELOPMENTS NEAR SEVERANCE ROAD PUD.

Severance Corners Village Development

There are several permitted but unoccupied or unfinished projects within the Severance Corners Village Center development on the southwest corner of US-2/7. These projects include:

- 74 residential units
- 1,800 SF high turnover restaurant
- 14,200 SF office space

RSG prepared an analysis of traffic resulting from these projects dated April 10, 2017, attached as Appendix A. The same a.m. and p.m. peak hour estimated traffic volumes are added into the background traffic.

Owls Glen PUD

The Owls Glen PUD consists of 113 residential units on the northeast corner of US-2/7 and Severance Road, west of the Circumferential Highway right-of-way. Access to the PUD will be on US-2/7.

Since only the total number of units within Owls Glen PUD is known but not the specific type of residential unit, RSG applied Land Use Code 270 – Residential Planned Use Development to estimate the trip generation rates. Typical with residential developments, pass-by and mixed-use development reductions are not applicable. Table 1 documents the estimated a.m. and p.m. peak hour trip generation expected from the Owls Glen PUD.

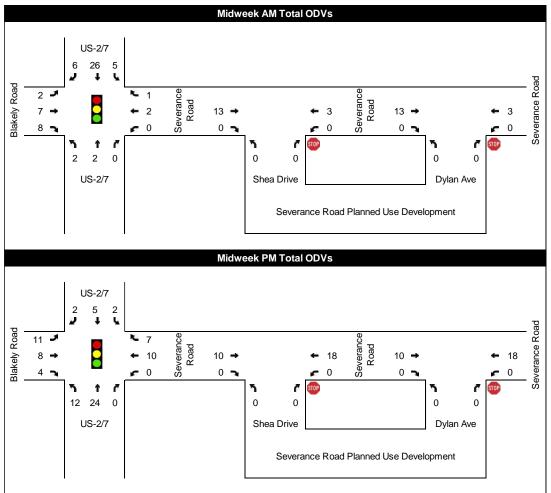

	Projected Trip Generation						
	Primary				Total		
	Enter Exit				TOLAI		
LUC: 270 - Residential Planned Use Development							
Weekday AM Peak Hour	14	50	0	0	64		
Weekday PM Peak Hour	51	27	0	0	78		

TABLE 1: ESTIMATED OWLS GLEN TRIP GENERATION.

ODV Trip Distribution

The ODV trips were distributed proportional to the adjusted observed volumes. The 4/10/17 memo documents the trip distribution process for the continued development of the Severance Corners Village Center; Appendix B of this TIS documents trip distribution associated with Owls Glen. The ODV trips added into the network are illustrated in Figure 7.

FIGURE 7: TOTAL ODV TRIPS ASSOCIATED WITH CONTINUED DEVELOPMENT OF THE SERVERANCE CORNERS VILLAGE CENTER AND OWLS GLEN PUD.

3.5 NO BUILD SCENARIO VOLUMES

The 2020 and 2025 No Build Scenario Volumes for the a.m. and p.m. peak hours are illustrated in Figure 8 and Figure 9, respectively. The scenario volumes include all adjustments, balancing, and ODVs as described earlier in the TIS.

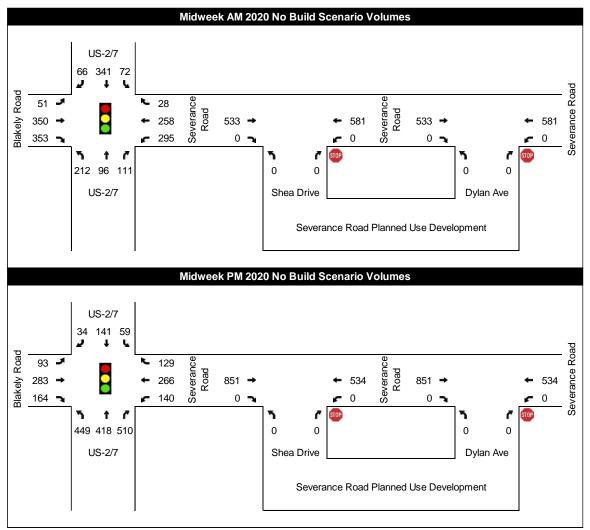
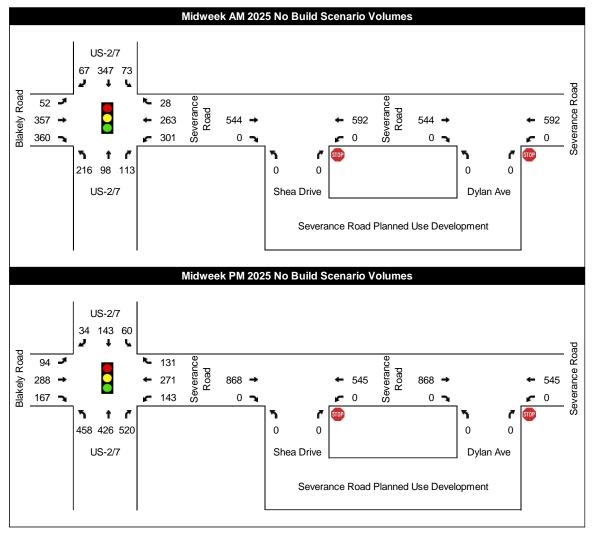



FIGURE 8: 2020 NO BUILD SCENARIO VOLUMES FOR THE AM AND PM PEAK HOURS.

FIGURE 9: 2025 NO BUILD SCENARIO VOLUMES FOR THE AM AND PM PEAK HOURS.

4.0 PROPOSED DEVELOPMENT VOLUMES

Trip generation estimates for the proposed land uses are shown in Table 1; refer to Figure 10 for corresponding building numbers. Following VTrans Transportation Demand Management Guidance⁸, a 4% credit is taken to account for Transportation Demand Management (TDM) measures made to encourage the use of alternate modes for mixed use developments with low existing transit usage rates. Internal capture estimates the number of trips that would be between uses within the development due to its mixed-use nature. More detailed Trip Generation and Distribution Summary and Internal Capture Worksheets are included as Appendix B and Appendix D, respectively, to this TIS.


			ITE	Land Use	e Descrip	tion			Extern	al Trips	Passby Trips		
อี เทม มาย Land Use		Mid-rise Apartment	Low-rise	General Office	Daycare	Retail	Restaura	Passby					
Land Use	ITE LUC	Units	Units	Sq. Ft.	Sq. Ft.	Sq. Ft.	nt Sq. Ft.	Rate	AM Peak	PM Peak	AM Peak	PMPeak	
n/a Townhouses	220		30						14	17	0	0	
1 Office	710			5,540					6	6	0	0	
2 Office	710			4,030					5	5	0	0	
3 Apartment	221	16							6	7	0	0	
3 Retail	820					8,730		34%	5	22	3	11	
3 Retail	820					4,380		34%	3	11	1	6	
4 Restaurant	932						4,050	43%	23	23	17	17	
5 Apartment	221	36							13	16	0	0	
6 Apartment	221	35							13	15	0	0	
7 Apartment	221	32							12	14	0	0	
8 Daycare	565				4,275				47	48	0	0	
9 Office	710			16,480				~~~~~~	19	19	0	0	
10 Office	710			8,130					9	9	0	0	
11 Apartment	221	45						~~~~~~	16	20	0	0	
		164	30	34,180	4,275	13,110	4,050		191	231	22	34	
							TI	DM credit	8	9			
LUC = Land Use C	Code					les	s internal	capture#	38	66			
*Trip rates estimated from ITE Trip Generation Manual 10th edition TOTAL EXTERNAL TRI							L TRIPS	145	156				

internal capture estimated using NCHRP 8-51 Internal Capture Estimation Tool, daily trips assume pm peak is 12% (K=DHV/ADT)

⁸https://vtrans.vermont.gov/sites/aot/files/planning/documents/trafficresearch/VTrans%20TDM%20Guidan ce%20Feb%202017.pdf

commercial land use rates are per 1,000 s.f.

FIGURE 10: BUILDING NUMBERS WITHIN SRPUD.

4.1 SRPUD TRIP DISTRIBUTION

RSG calculated the entering and exiting trips using ITE trip generation data, and then used the no build scenario volumes and local knowledge of the highway network to proportionally distribute entering and exiting traffic volumes. The entering and exiting trip distribution by land use for the a.m. and p.m. peak hours is shown in Table 3 and Table 4, respectively.

	Total Trip	s by Use	Category	AM F	Peak Hou	ir - Total Ti	rips		
	AM	PM	daily	ENTER	EXIT	ENTER	EXIT	PBY ENT.	PBY EXIT
office	40	39	333	86%	14%	33	5		
mid-rise apartments	59	72	892	26%	74%	15	42		
low-rise residential	14	17	220	23%	77%	3	10		
retail	12	50	495	62%	38%	7	4	2	2
restaurant	40	40	454	55%	45%	21	17	9	7
other (daycare)	47	48	204	53%	47%	24	21		
	212	265	2597						
			Tota	al Trips (le	ss TDM)	103	101	204	
			less internal capture [#]			19	19		
			Total Passby Trips			12	9		
			То	tal Extern	al Trips	72	73	145	

TABLE 3: AM PEAK HOUR ENTERING AND EXITING TRIP DISTRIBUTION FROM SRPUD, WITH 4% TDM CREDIT APPLIED.

	Total Trip	s by Use	Category		PM Pe	ak Hour]	
	AM	PM	daily	ENTER	EXIT	ENTER	EXIT	PBY ENT.	PBY EXIT
office	40	39	333	16%	84%	6	32		
mid-rise apartments	59	72	892	61%	39%	42	27		
low-rise residential	14	17	220	63%	37%	10	6		
retail	12	50	495	48%	52%	23	25	8	8
restaurant	40	40	454	62%	38%	24	14	10	6
other (daycare)	47	48	204	47%	53%	21	24		
	212	265	2597						
			Tota	al Trips (le	ss TDM)	126	128	255	
			less internal capture [#] 33 33						
			Total Passby Trips 18				15		
			То	tal Extern	al Trips	76	81	156	

TABLE 4: PM PEAK HOUR ENTERING AND EXITING TRIP DISTRIBUTION FROM SRPUD, WITH 4% TDM CREDIT APPLIED.

Based on the proximity to Exit 16 and I-89 to the south of the project along US-2/7, RSG assumed a higher proportion of trips are destined to or originating from Exit 16 than the background traffic volumes may suggest. RSG assigned 25% of all entering and exiting trips through Exit 16. RSG assigned the remaining 75% of entering and exiting trips proportionally based on the no build scenario volumes.

SRPUD has two drives accessing the development along Severance Road: Shea Drive and Dylan Avenue. Both driveways offer full turning access to the development. Shea Drive is the closest driveway to eight of the buildings within the development; Dylan Avenue is the closest drive to three of the buildings. The Townhouses are assumed to be equidistant to the two driveways. Shea Drive is assumed to handle 8/11, or 73%, of the trips, with Dylan Avenue receiving the remaining 27% of trips. The exception to this driveway utilization distribution is with the westbound lefts; 90% of the WB lefts are assumed to use the Dylan Avenue WB left turn lane on Severance Road, with the remaining 10% of WB lefts at Shea Drive.

The resulting trip distribution is illustrated in Figure 11.

FIGURE 11: ESTIMATED TRIP DISTRIBUTION RESULTING FROM PROPOSED SRPUD.

4.2 BUILD SCENARIO VOLUMES

The 2020 and 2025 No Build Scenario Volumes for the a.m. and p.m. peak hours are illustrated in Figure 12 and Figure 13, respectively. The scenario volumes include all adjustments, balancing, and ODVs as described earlier in the TIS.

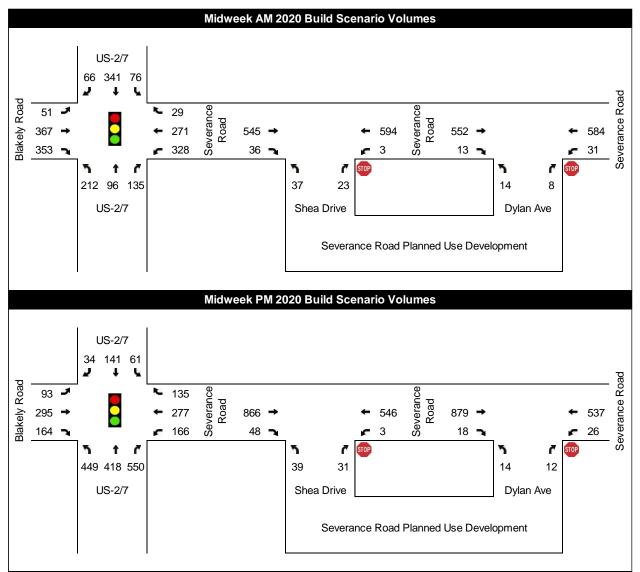
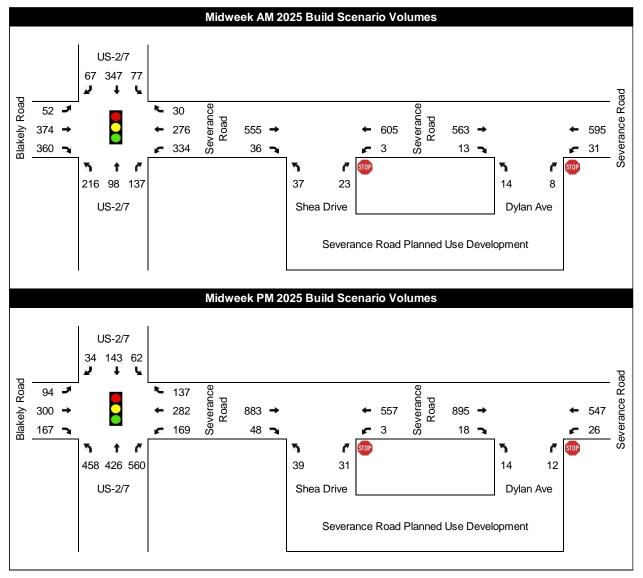



FIGURE 12: 2020 BUILD SCENARIO VOLUMES FROM PROPOSED SRPUD.

FIGURE 13: 2025 BUILD SCENARIO VOLUMES FROM PROPOSED SRPUD.

5.0 CONGESTION ANALYSIS

5.1 LEVEL-OF-SERVICE DEFINITION

Level-of-service (LOS) is a qualitative measure describing the operating conditions as perceived by motorists driving in a traffic stream. LOS is calculated using the procedures outlined in the Highway Capacity Manual, Sixth Edition: A Guide for Multimodal Mobility Analysis⁹ (HCM6). In addition to traffic volumes, key inputs include the number of lanes at each intersection, traffic control type (signalized or unsignalized), and the traffic signal timing plans.

The HCM6 defines six qualitative grades to describe the level of service at an intersection. Level-of-service is based on the average control delay per vehicle. Table 5 shows the various LOS grades and descriptions for signalized and unsignalized intersections.

LOS	Characteristics	Unsignalized Total Delay (sec)	Signalized Total Delay (sec)
А	Little or no delay	≤ 10.0	≤ 10.0
В	Short delays	10.1-15.0	10.1-20.0
С	Average delays	15.1-25.0	20.1-35.0
D	Long delays	25.1-35.0	35.1-55.0
E	Very long delays	35.1-50.0	55.1-80.0
F	Extreme delays	> 50.0	> 80.0

TABLE 5: LEVEL-OF-SERVICE CRITERIA FOR SIGNALIZED AND UNSIGNALIZED INTERSECTIONS

The delay thresholds for LOS at signalized and unsignalized intersections differ because of the driver's expectations of the operating efficiency for the respective traffic control conditions. According to HCM procedures, an overall LOS cannot be calculated for two-way stop-controlled intersections because not all movements experience delay. In signalized and all-way stop-controlled intersections, all movements experience delay and an overall LOS can be calculated.

The VTrans policy on level of service is:

 Overall LOS C should be maintained for state-maintained highways and other streets accessing the state's facilities.

⁹ The HCM6 does not provide methodologies for calculating intersection delays at certain intersection types including signalized intersections with exclusive pedestrian phases and signalized intersections with non NEMA-standard phasing. Because of these limitations, HCM 2000 and HCM 2010 methodologies are employed where necessary and as noted.

- Reduced LOS may be acceptable on a case-by-case basis when considering, at minimum, current and future traffic volumes, delays, volume to capacity ratios, crash rates, and negative impacts resulting from improvements necessary to achieve LOS C.
- LOS D should be maintained for side roads with volumes exceeding 100 vehicles/hour for a single lane approach (150 vehicles/hour for a two-lane approach) at two-way stopcontrolled intersections.

5.2 TRAFFIC MODELING SCENARIOS

RSG built a Synchro / SimTraffic model using the 2020 and 2025 adjusted intersection volumes for the No Build and Build scenarios. The performance results for the a.m. and p.m. peak hours are shown in Table 6 and Table 7, respectively. These results assume optimized traffic signal timings. Delay is reported in seconds per vehicle. Highlighting indicates where the LOS exceeds VTrans guidelines.

	AM Peak Hour											
	202	20 No Bi	uild	2	020 Buil	d	20	25 No Bi	uild	2	2025 Buil	id
Intersections	LOS	Delay	v/c	LOS	Delay	v/c	LOS	Delay	v/c	LOS	Delay	v/c
US-2-7/Blakely Road/Severance Road												
Overall	D	40	0.95	D	43	0.96	С	29	0.87	С	29	0.86
EB Blakely Left	С	25	0.14	С	26	0.14	С	22	0.15	С	22	0.15
EB Blakely Thru	D	43	0.80	D	49	0.85	С	34	0.73	D	35	0.76
EB Blakely Right	Е	69	0.95	E	73	0.96	D	45	0.87	D	45	0.86
WB Severance Left	D	37	0.82	D	45	0.89	С	23	0.53	С	25	0.59
WB Severance Thru	С	25	0.48	С	25	0.48	С	25	0.47	С	26	0.49
WB Severance Right	-	-	-	-	-	-	С	22	0.06	С	22	0.06
NB US-2/7 Left	С	30	0.69	С	30	0.69	В	19	0.31	В	19	0.32
NB US-2/7 Thru	С	23	0.16	С	24	0.16	С	21	0.16	С	21	0.16
NB US-2/7 Right	С	23	0.22	С	25	0.26	С	22	0.21	С	22	0.27
SB US-2/7 Left	С	22	0.15	С	23	0.16	В	18	0.14	В	18	0.15
SB US-2/7 Thru	D	43	0.81	D	46	0.82	С	28	0.57	С	28	0.59
SB US-2/7 Right	-	-	-	-	-	-	С	21	0.13	С	21	0.13
severance Road / Shea Drive												
EB Severance Thru / Right	-	-	-	Α	<1	0.00	-	-	-	Α	<1	0.00
WB Severance Thru / Left	-	-	-	Α	9	0.00	-	-	-	Α	9	0.00
NB Shea Left	-	-	-	D	25	0.17	-	-	-	D	26	0.18
NB Shea Right	-	-	-	В	12	0.04	-	-	-	В	12	0.04
🜆 Severance Road / Dylan Avenue												
EB Severance Thru / Right	-	-	-	Α	<1	0.00	-	-	-	Α	<1	0.00
WB Severance Left	-	-	-	Α	9	0.03	-	-	-	Α	9	0.03
WB Severance Thru	-	-	-	Α	<1	0.00	-	-	-	Α	<1	0.00
NB Dylan Left / Right	-	-	-	С	20	0.09	-	-	-	С	21	0.09

TABLE 6: AM PEAK HOUR PERFORMANCE RESULTS FOR THE BASE YEAR (2020) AND FUTURE YEAR (2025).

As expected, the US-2/7 / Severance Road / Blakely Road intersection is near capacity in the a.m. peak hour existing condition. The addition of new traffic associated with the development reduces the overall signal capacity and performance, particularly in regard to the eastbound approaches. In the future year (2025 condition), the planned intersection improvement project

COLCHESTER STPG 5600(17) greatly improves signal operations. Both Shea Drive and Dylan Avenue operate acceptably in the base year and future year a.m. peak hour scenarios.

TABLE 7: PM PEAK HOUR PERFORMANCE RESULTS FOR THE BASE YEAR (2020) AND FUTURE
YEAR (2025).

	PM Peak Hour											
	-	20 No Bi	bliu		020 Buil	ld		25 No Bi	uild	2	025 Bui	d
Intersections	LOS	Delay	v/c	LOS	Delay	v/c	LOS	Delay	v/c	LOS	Delay	v/c
US-2-7/Blakely Road/Severance Road												
OVerall	С	33	0.90	D	36	0.93	С	26	0.81	С	28	0.87
EB Blakely Left	С	26	0.44	С	27	0.45	С	27	0.39	С	26	0.38
EB Blakely Thru	С	31	0.62	С	33	0.65	D	38	0.81	D	37	0.81
EB Blakely Right	С	29	0.42	С	29	0.43	С	32	0.55	С	31	0.53
WB Severance Left	С	26	0.48	С	27	0.56	С	26	0.32	С	25	0.36
WB Severance Thru	D	51	0.90	D	53	0.91	D	36	0.76	С	35	0.75
WB Severance Right	-	-	-	-	-	-	С	31	0.44	С	30	0.44
NB US-2/7 Left	С	23	0.74	С	24	0.75	В	15	0.38	В	15	0.38
NB US-2/7 Thru	С	25	0.59	С	26	0.60	С	21	0.55	С	22	0.56
NB US-2/7 Right	D	39	0.85	D	49	0.93	С	30	0.79	D	38	0.87
SB US-2/7 Left	С	25	0.21	С	26	0.22	В	15	0.19	В	16	0.21
SB US-2/7 Thru	С	33	0.45	С	34	0.45	В	17	0.20	В	19	0.21
SB US-2/7 Right	-	-	-	-	-	-	В	16	0.06	В	17	0.06
📾 Severance Road / Shea Drive												
EB Severance Thru / Right	-	-	-	Α	<1	0.00	-	-	-	Α	<1	0.00
WB Severance Thru / Left	-	-	-	Α	10	0.00	-	-	-	Α	10	0.00
NB Shea Left	-	-	-	E	39	0.27	-	-	-	Е	41	0.28
NB Shea Right	-	-	-	С	17	0.09	-	-	-	С	17	0.09
o Severance Road / Dylan Avenue												
EB Severance Thru / Right	-	-	-	Α	<1	0.00	-	-	-	Α	<1	0.00
WB Severance Left	-	-	-	Α	10	0.03	-	-	-	Α	10	0.04
WB Severance Thru	-	-	-	Α	<1	0.00	-	-	-	Α	<1	0.00
NB Dylan Left / Right	-	-	-	D	28	0.14	-	-	-	D	28	0.14

Similar to the a.m. peak hour, the US-2/7 / Severance Road / Blakely Road intersection is near capacity in the p.m. peak hour existing condition. The addition of new traffic associated with the development reduces the overall signal capacity and performance. In the future year (2025 condition), the planned intersection improvement project greatly improves signal operations. Delay at Shea Drive is estimated to be elevated, however as a side-street with under 100 vph and rerouting options through Dylan Avenue, LOS E is acceptable at this location. Dylan Avenue is estimated to operate acceptably in the base year and future year p.m. peak hour scenarios.

RSG modeled the traffic queues using SimTraffic microsimulation software. SimTraffic microsimulation results, as opposed to Highway Capacity Manual procedures, are recommended in congested locations such as the US-2/7 / Severance Road / Blakey Road intersections because they better reflect the interaction of queue spillover from adjacent lanes. Average queue results, as presented in Table 8, represent the queue length in the number of cars assuming one car length is 20 feet.

		Average Queue Length in Vehicles									
		AM Pe	ak Hour		PM Peak Hour						
	202	20	202	25	202	20	2025				
	No Build	Build	No Build	Build	No Build	Build	No Build	Build			
Intersection 1: US 2/7 & Sever	rance Road	& Blakely	Road								
EB	25	26	11	12	7	9	8	9			
WB	17	19	6	6	14	15	7	7			
NB	6	6	4	4	10	9	10	10			
SB	19	26	8	8	5	5	4	4			
Intersection 2: Severance Roa	d & Shea D	rive									
EB	0	0	0	0	0	0	0	0			
WB	0	0	0	0	0	0	0	0			
NB	0	1	0	1	0	2	0	1			
Intersection 3: Severance Roa	d & Dylan A	venue									
EB	0	0	0	0	0	0	0	0			
WB	0	1	0	1	0	1	0	1			
NB	0	1	0	1	0	1	0	1 .			

TABLE 8: SIMTRAFFIC QUEUING ANALYSIS RESULTS, REPORTED IN NUMBER OF VEHICLES.

The most significant increase in estimated queue occurs in the a.m. peak hour in the base year (2020) model. RSG estimates the southbound US-2/7 queue will increase by seven vehicles. At 520 feet (or 26 vehicle lengths), the average eastbound Blakely Road queue is estimated to extend just short of the Severance Green northbound intersection. The average westbound Severance Road queue is not estimated to interact with any other roadways, including Shea Drive. The US-2/7 queues do not approach any adjacent intersection. As noted earlier, the planned intersection construction improvement project, COLCHESTER STPG 5600(17), is expected to significantly improve intersection operations, resulting in shorter queues in the future year (2025) scenario.

6.0 CRASH REVIEW AND SAFETY ANALYSIS

6.1 CRASH HISTORIES

RSG compiled available crash incidents reported by VTrans from January 1, 2014 through December 31, 2018. VTrans maintains a statewide database of all reported crashes along all state highways and federal aid road segments.¹⁰ The data was investigated to develop an assessment of the general trends and crash types in the study area. RSG identified 37 crashes along Severance Road between US 2/7 and approximately 500 feet east of the SRPUD. Figure 14 illustrates the location of these crashes.

FIGURE 14: REPORTED CRASHES BETWEEN JANUARY 1, 2014 THROUGH DECEMBER 31, 2018 ON SEVERANCE ROAD BETWEEN US-2/7 AND A POINT APPROXIMATELY 500 FEET EAST OF THE SRPUD.

As shown in Figure 14, 30 crashes were located at the US-2/7 / Severance Road / Blakely intersection. The proposed COLCHESTER STPG 5600(17) intersection improvement project, illustrated in Figure 3, is intended to address congestion issues and improve vehicle safety at this location.

¹⁰ This data is exempt from Discovery or Admission under 23 U.S.C. 409.

RSG identified seven reported crashes along Severance Road within 500 feet of the SRPUD. Of these seven, one crash, involving a single vehicle, resulted in an injury; the remaining six crashes were considered property damage only. Three of the seven crashes (including the injury crash) were single vehicle crashes, three were rear end crashes, and one was not classified. Only one of the crashes occurred during the winter months.

As noted, 43% of the crashes along Severance Road were rear end crashes. This type of crash occurs when a vehicle must slow or stop in the travel way. It is unlikely the rear end crashes were a result of queues forming from US-2/7 nearly a quarter mile to the west; it is more likely that these vehicles were stopped to turn left and drivers approaching in the same direction were unaware or unable to slow and stop their vehicle to avoid a collision. A left turn lane would allow the left turning vehicles to exit the traffic stream and reduce potential conflicts with same direction through movements.

6.2 SIGHT DISTANCE OBSERVATIONS

As defined in the 2011 publication *A Policy on Geometric Design of Highways and Streets*, from the American Association of State Highway and Transportation Officials (AASHTO), sight distance is the "the length of roadway ahead that is visible to the driver."¹¹ Sight distances of sufficient length are necessary at all points along a roadway to ensure vehicles can safely stop or avoid colliding with potential obstructions or other vehicles on the roadway.

Standard practice in assessing intersection safety and operations involves measuring two separate sight distances – **stopping sight distance** and **intersection sight distance**.

Stopping sight distance is the visible distance along a roadway between an advancing motorist and a potential obstacle in the roadway. It is measured from a point representing the approaching driver's eye and a point representing an obstacle in the roadway.¹² Stopping sight distances of adequate length are needed along all roadways, both at and away from intersections, so that drivers travelling at design speeds can react to potential obstacles and safely brake to avoid collisions. Design minimum stopping sight distances are calculated based on factors such as design speed, response times, and grades as reported in the *2011 Policy on Geometric Design of Highways and Streets*.¹³

23

¹¹ American Association of State Highway and Transportation Officials, A Policy on Geometric Design of Highways and Streets, Fifth Edition (Washington D.C.: American Association of State Highway and Transportation Officials, 2011). Page 3-2.

¹² As noted in the 2011 Policy on Geometric Design of Highways and Streets (page3-14 to 3-15), the height of the driver's eye is assumed to be 3.5' above the road surface and the height of a potential obstacle is 2.0' above the road surface.

¹³ American Association of State Highway and Transportation Officials, A Policy on Geometric Design of Highways and Streets, Fifth Edition (Washington D.C.: American Association of State Highway and Transportation Officials, 2011). Page 3-5.

Intersection sight distance is the distance available along the major road travelled way corresponding with the maximum visibility between an advancing motorist on the major road and an entering motorist on an intersecting minor road. It is measured between a point representing the advancing driver's eye above the major road and the entering driver's eye above the intersecting road.¹⁴

The 2011 Policy on Geometric Design of Highways and Streets states that the available intersection sight distance should be at least equal to the required stopping sight distance along the major road.

"Sight distance is also provided at intersections to allow the drivers of stopped vehicles a sufficient view of the intersecting highway to decide when to enter the intersecting highway or to cross it. If the available sight distance for an entering or crossing vehicle is at least equal to the appropriate stopping sight distance for the major road, then drivers have sufficient sight distance to anticipate and avoid collisions."

However, when possible it is desirable to have intersection sight distances that exceed the design minimum stopping sight distances in order to offer improved operations, such that major road traffic need not decelerate to accommodate entering traffic.

"However, in some cases a major-road vehicle may need to stop or slow to accommodate the maneuver by a minor road vehicle. To enhance traffic operations, intersection sight distances that exceed stopping sight distances are desirable along the major road."

Based on the 35 mph speed limit and relatively level grade along Severance Road in the project area, the design minimum intersection sight distance for turning traffic is 390 feet and the design minimum stopping sight distance is 250 feet.

RSG reviewed sight distances in the field in the approximate location of the SRPUD drive entrances. The sight distance exceeds 500 feet in both directions for vehicles turning out of Shea Drive and Dylan Avenue. The intersection sight distance to the west was slightly restricted by some vegetation, however the SRPUD site plan will remove these obstructing trees. The intersection sight distance view to the east and west along Severance Road from the proposed location of Shea Drive are shown in Figure 15.

The stopping sight distance along Severance Road exceeded 500 feet in the project area.

¹⁴ As noted in the 2011 Policy on Geometric Design of Highways and Streets (page3-14 to 3-15), the height of the driver's eye of the approaching vehicle is assumed to be 3.5' above the road surface of the major road and the height of the driver's eye of the entering vehicle is assumed to 3.5' above the minor road surface and 14.5' back from the edge of the major road travelled way.

FIGURE 15: INTERSECTION SIGHT DISTANCE VIEWS TO THE WEST (LEFT) AND EAST (RIGHT) NEAR PROPOSED SHEA DRIVE ON SEVERANCE ROAD.

7.0 TURN LANE WARRANT ANALYSIS

RSG conducted a turn lane warrant analysis to determine if projected peak hour traffic volumes are sufficient to meet warrant thresholds for construction of a dedicated left- or right- turn lane on Severance Road. Dedicated turn lanes have the safety and capacity benefits of removing turning traffic from the through volume traffic stream but also promote higher vehicle speeds and require increased pavement widths.

7.1 LEFT TURN LANE WARRANT

Using the scenario volumes, RSG conducted a left turn lane warrant analysis at the Severance Road intersections with the two drive entrances. The original site layout includes a left turn lane at the Dylan Avenue intersection. RSG assumed 90% of the westbound left turn demand would utilize this intersection. VTrans has identified the Kikuchi and Chakroborty (K&C) model as the preferred turn lane warrant analysis model, using 85% of the DHV (VTrans email 26 April 2019 from Christopher Clow).

Assuming 90% of the WB left turns are assigned to one development entrance, a left turn lane is warranted in the either the base year (2020) a.m. peak hour and future year (2025) p.m. peak hour build scenarios. The warrant in the base year a.m. peak hour is just on the threshold. As background through traffic grows into the future year, the percentage of left-turns decreases, and the warrant is no longer met. Similarly, in the p.m. peak hour, the left turn lane is only warranted as the opposing volume increases in the future.

Assuming the WB left turns are split equally between both development entrances, a left turn lane is still warranted, but only in the p.m. peak hour for the future year.

TABLE 9: RESULTS OF LEFT TURN LANE WARRANT ANALYSIS ASSUMING 90% OF WESTBOUND LEFT TURNING VEHICLES USE ONE DRIVE (LEFT) AND THE WESTBOUND LEFTS USE BOTH DRIVES EQUALLY (RIGHT, FILLED GREY).

	90% Use Dylan Ave				Entrances Used Equally				
	EB Left		WB Left		EB Left		WB	Left	
	Turn Lane		Turn Lane		Turn Lane		Turn Lane		
_	AM	ΡM	AM	PM	AM	ΡM	AM	PM	
Kikuchi and Chakroborty Model									
2020 NoBuild	-	-	-	-	-	-	-	-	
2020 Build	-	-	Yes	No	-	-	No	No	
2025 NoBuild	-	-	-	-	-	-	-	-	
2025 Build	-	-	No	Yes	-	-	No	Yes	

Additional consideration should be given to roadway context. As minor arterials, the roadways should prioritize efficient through movements. While the speed limit is low (35 mph), the left turn

lanes allow stopped vehicles to exit the traffic stream, allowing for more efficient through movement and reducing the risk of rear end collisions.

The crash history discussed in Section 6 indicates a high percentage of rear end crashes resulting from left turning vehicles. The proposed SRPUD will increase the number of left turning vehicles on Severance Road, and a left turn lane will remove the conflict from the through movement. Although the current site plan indicates the left turn lane at Dylan Avenue, RSG estimates the left turn demand will be greater at Shea Drive due to its more central location within the PUD. RSG recommends relocating the proposed left turn lane on Severance Road to Shea Drive instead of Dylan Avenue.

7.2 RIGHT TURN LANE WARRANT

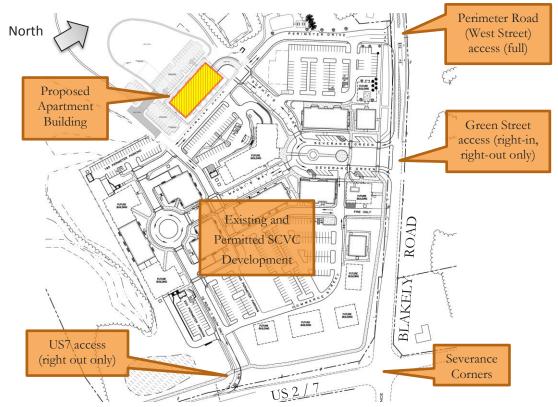
Using the scenario volumes, RSG conducted a right turn lane warrant analysis at the Severance Road intersections with the two drive entrances. The original site layout does not include a right turn lane.

From the building layout with respect to the driveways, RSG assigned 73% of the right turn demand from Severance Road to Shea Drive. Using the VTrans methodology for evaluating warrants for a right turn lane based on speed limit, the advancing volume, and the percentage of right turns at an intersection, RSG determined that a right turn lane is not warranted at Shea Drive or Dylan Avenue.

55 Railroad Row White River Junction, VT 05001 802.295.4999 www.rsginc.com

RSG promotes sustainable business practices that minimize negative impacts on the environment. We print all proposals and reports on recycled paper that utilizes a minimum of 30% post-consumer waste. RSG also encourages recycling of printed materials (including this document) whenever practicable. **For more information on RSG's sustainability practices, please visit www.rsginc.com**. 6/20/19 Severance Road PUD TIS Appendices

Severance Corners Village Center Traffic Update Memo


MEMORANDUM

TO:	Robin Jeffers, SD Ireland
FROM:	Mark Smith, PE.
DATE:	April 10, 2017
SUBJECT:	Severance Corners Village Center – Traffic Impact Update

RSG has conducted the following analysis of traffic operations, signal warrants, and safety proximate to the proposed additional housing at Severance Corners Village Center in Colchester, Vermont.

1.0 PROJECT DESCRIPTION

This study evaluates the traffic and potential infrastructure impacts associated with the construction of 36 housing units adjacent to the existing developments in Severance Corners Village Center (SCVC). As shown in Figure 1, the development has three access points; two off Blakely Road (one unrestricted access, one limited to right turns in and out only), and one on US7 (limited to exiting right turns only).

FIGURE 1: PROJECT SITE PLAN

This study relies upon design standards and analysis procedures documented in the 2010 Highway Capacity Manual,¹ Trip Generation,² A Policy on Geometric Design of Highways and Streets,³ Manual on Uniform Traffic Control Devices (MUTCD),⁴ Traffic Impact Evaluation: Study and Review Guide,⁵ and the Vermont State Design Standards,⁶ which are the generally accepted traffic analysis references relied upon by traffic engineering professionals and VTrans for projects of this type in Vermont.

2.0 PROJECT SCOPE

VTrans guidelines specify that a traffic study should be considered if the proposed development will generate 75 or more peak hour trips. The geographic scope of the study should also include the immediate access points and those intersections or highway segments receiving 75 or more project-generated peak hour trips.⁷ We project no intersections will meet the 75 vehicle per hour trip generation threshold. This study is therefore limited to the project access points.

3.0 LOCAL TRAFFIC

The project is located at the southwest corner of the intersection of Blakely Road and US7 in Colchester, Vermont (Figure 2). This intersection, also referred to as Severance Corners, is located 1.8 miles north of I-89 Exit 16.

Blakely Road is a two-lane minor arterial, with a posted speed limit of 35 miles per hour. In 2013, VTrans reported an Annual Average Daily Traffic Volume (AADT) of 10,400 vehicles per day⁸.

US7 is a 2-lane principal arterial, posted at 50 mph. In 2017, VTrans reported an Annual Average Daily Traffic Volume (AADT) of 14,433 vehicles per day⁹.

¹ Transportation Research Board, National Research Council, *Highway Capacity Manual* (Washington, DC: National Academy of Sciences, 2010).

²Institute of Transportation Engineers, *Trip Generation* 9th Edition (Washington, D.C.: Institute of Transportation Engineers, 2012).

³ American Association of State Highway and Transportation Officials (AASHTO), *A Policy on Geometric Design of Highways and Streets*, 6th Edition (Washington DC: AASHTO, 2011).

⁴ American Traffic Safety Services Association (ATSSA), ITE, and AASHTO, *Manual on Uniform Traffic Control Devices*, 2009 Edition (Washington DC: FHWA, 2009).

⁵ Vermont Agency of Transportation, Development Review Section, *Traffic Impact Evaluation Study and Review Guide* (October 2008).

⁶ State of Vermont Agency of Transportation, Vermont State Standards (Montpelier: VTrans, 1 July 1997).

⁷ Vermont Agency of Transportation, Development Review Section, *Traffic Impact Evaluation Study and Review Guide* (January 2003).

⁸ Automatic Traffic Recording station D407, located 0.7 miles east of Lavigne Rd, or 0.6 miles west of the Perimeter Rd.

⁹ Continuous Traffic Counting station D040. Located 0.6 miles south of Blakely Rd.

FIGURE 2: PROJECT AND NEARBY TRAFFIC COUNTER LOCATIONS

4.0 ANALYSIS TRAFFIC VOLUMES

This analysis examines AM and PM design hour vehicle delays and capacity at the project access points.

These measures are examined first with baseline, **No Build** scenario traffic volumes, which represent the anticipated design hour conditions in the target study years without the proposed development in place.

Once baseline conditions are established, anticipated traffic associated with the proposed development is added to the No Build scenario volumes to create **Build** scenario traffic volumes, which are in turn used to project intersection delays, levels of service and volume to capacity ratios with the proposed development in place.

A detailed description of the elements that contribute to the No Build and Build scenario traffic volumes is presented below.

Worksheets detailing the development of traffic volumes for each scenario (AM, PM, No-Build, Build), including the distribution of traffic on to the network and volumes from other developments are attached to this memo.

4.1 | BACKGROUND TRAFFIC VOLUMES AND ADJUSTMENTS

RSG obtained the most recent VTrans turning movement count data for the intersection of Blakely Severance and US7, counted in June of 2015. Turning Movement Counts were performed by RSG at the project access points in March 2017.

Following VTrans traffic study guidelines, raw peak hour traffic volumes were adjusted to represent the design hour volume (DHV)¹⁰ in 2017 and 2022¹¹ using two adjustment factors:

- 1. Design hour adjustment factors are based on the CTC D040 on US7 for the corresponding access point, and the ATR D407 on Blakely Rd for those access points. The 2017 DHV at each counter was compared to the peak hour volumes on the date of each corresponding turning movement count to formulate DHV adjustments. DHV adjustments decreased the raw count volumes by 1% on Blakely Road, and increased the count by 26% on US7¹².
- 2. An annual adjustment factor, which represents general background traffic growth as presented in the 2015 VTrans Red Book. The short term (5 year) growth expected is +4%, thus background traffic was increased by this amount for the future planning year in this analysis (2022).

4.2 | PROJECT TRIP GENERATION

Trip generation refers to the number of new vehicle trips originating at or destined for a particular development. To estimate the number of new vehicle trips for the project, we examined trip generation rates presented in the Institute of Transportation Engineer's *Trip Generation Manual*.¹³ Applying trip generation rates for 36 apartments (ITE Land Use Code 220) we calculate the additional residences will generate approximately 18 trips during the weekday AM peak hour, and 22 new vehicle trips during the PM peak hour. Figure 3 presents the projected trip generation in the weekday peak hours. There are expected to be 239 total weekday trips from the additional development.

		Project Trip Generation								
		AM	Peak	PM Peak						
Land Use	units	Enter	Exit	Enter	Exit					
Apartment	36	3 15		15	7					
	Total Trips	1	8	22						

FIGURE 3: PROJECT PEAK HOUR TRIP GENERATION SUMMARY

¹⁰ The DHV is the 30th highest hour of traffic for the year and is used as the design standard in Vermont. ¹¹ VTrans requires analysis during the year project construction is expected to be complete and in a future year scenario 5 years after project completion.

¹² While the latter adjustment is unusually high, it appears justified from recent observations of the southern approach to Severance Corners intersection, which appears to be over capacity in the PM Peak Hour.
¹³ Institute of Transportation Engineers, Trip Generation 9th Edition (Washington, D.C.: Institute of

Transportation Engineers, 2012).

4.3 | OTHER DEVELOPMENT VOLUMES

Other development volumes (ODVs) represent trips generated by anticipated developments in the study area. Trips generated by ODVs are included in every scenario (both No Build and Build) because we assume they are already present on the road network in the analysis years.

Through communications with the Town Planning and Zoning staff, it was determined that there were no <u>imminent</u> projects in the vicinity of this growth center that might generate additional traffic in the near future.

There are several permitted but unbuilt (or unoccupied) projects within the Village Center development itself however, including;

- 1,800 s.f. high turnover restaurant
- 14,200 s.f. office space
- 45 residential units

Additional traffic expected from these elements has been estimate using ITE Trip Generation estimates, which are summarized in Figure 4. These volumes are included in both the no-build and build scenarios. Pass-by trips, which refer to trips that are already on the adjacent highway but are diverted to the new land use, are accounted for separately.

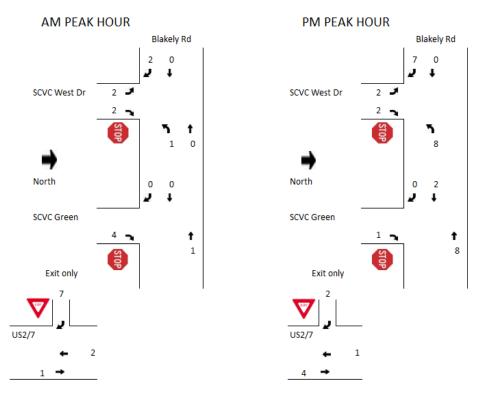
FIGURE 4: PEAK HOUR TRAFFIC FROM PERMITTED BUT UNBUILT OR UNOCCUPIED DEVELOMENT IN SCVC

	ODV Trip Generation									
		AM	Peak		PM Peak					
	Primary Pass-by			Prin	nary	Pass	s-by			
Land Use	Land Use size units				Enter	Exit	Enter	Exit	Enter	Exit
General Office Building	14,200 sq. ft.		19	3	0	0	4	18	0	0
High-Turnover (Sit-Down) Restaurant	1,800 sq. ft.		11	9	0	0	6	4	5	3
Apartment	45 d. u.		5	21	0	0	18	10	0	0
	su	b-total	35	32	0	0	28	31	5	3
	Tota	al Trips	6	7	0)	5	9	8	3

Two maps detailing the anticipated distribution of traffic from the development and the various access points are attached at the end of this memo.

4.4 | DEVELOPMENT VOLUME SUMMARY

The total traffic entering and exiting the SCVC development, including existing traffic, permitted but unoccupied or unbuilt (ODV), and the proposed apratments is summarized in Figure 5 below.


FIGURE 5. TOTAL SCVC DEVELOPMENT TRAFFIC

	AM	Peak	PM	Peak
	Enter	Exit	Enter	Exit
Existing Counts (March 2017)	67	114	125	80
Permitted but unoccupied or unbuilt	35	32	32	34
Proposed apartments	3	15	15	7
Sub-total	105	161	172	121
Total	26	56	29	93

4.5 | SCENARIO VOLUME GRAPHICS

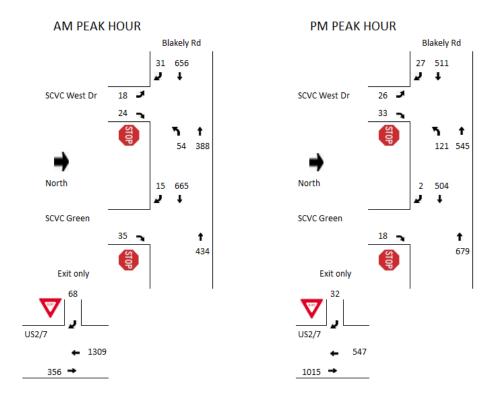
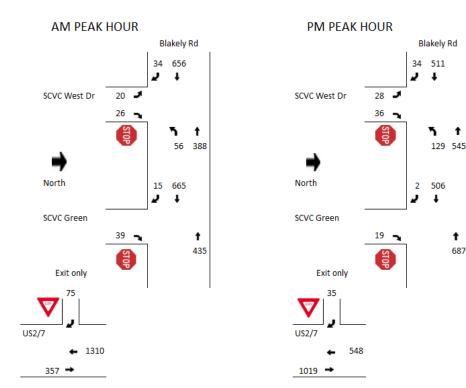

Figure 6 represents the peak hour traffic generated by the proposed additional housing, and subsequent trips through each access point.

FIGURE 6: PROJECT PEAK HOUR TRAFFIC


Figures 7 and 8 present the 2017 No Build and Build scenario traffic volumes at the study intersection, respectively. Figures 9 and 10 present the 2022 No Build and Build scenario traffic volumes at the study intersection, respectively.

No Build traffic volumes include the raw count volumes, adjusted to design hour conditions, and projected traffic from recently permitted developments in the area (ODVs, if applicable), as well as traffic from permitted but unbuilt traffic within the SCVC development. Build scenario volumes represent the addition of project-generated traffic (the proposed additional housing) to the No Build traffic volumes.

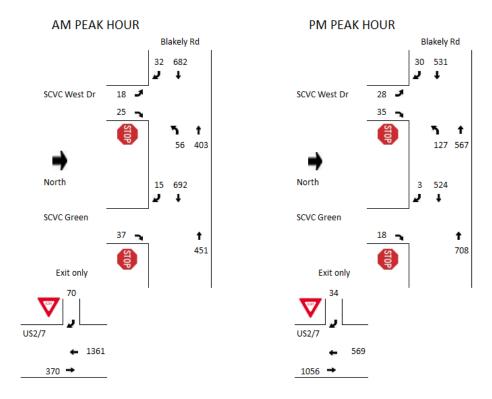


FIGURE 7: 2017 PEAK HOUR NO-BUILD TURNING MOVEMENT VOLUMES

FIGURE 8: 2017 PEAK HOUR BUILD TURNING MOVEMENT VOLUMES

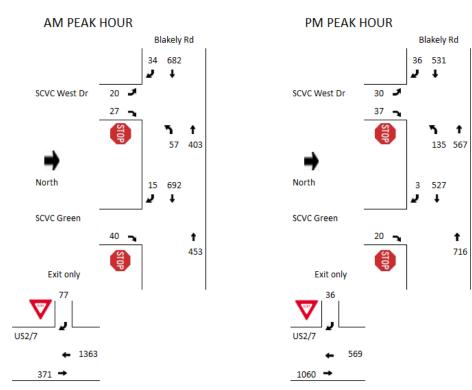


FIGURE 9: 2022 NO BUILD TURNING MOVEMENT VOLUMES

5.0 CONGESTION ANALYSIS

5.1 | LEVEL-OF-SERVICE DEFINITION

Level-of-service (LOS) is a qualitative measure describing the operating conditions as perceived by motorists driving in a traffic stream. LOS is calculated using the procedures outlined in the 2000 and 2010 Highway Capacity Manuals.¹⁴ In addition to traffic volumes, key inputs include the number of lanes at each intersection, traffic control type (signalized or unsignalized), and the traffic signal timing plans (if applicable).

The 2010 Highway Capacity Manual defines six qualitative grades to describe the level of service at an intersection. Level-of-Service is based on the average control delay per vehicle. Figure 11 shows the various LOS grades and descriptions for signalized and unsignalized intersections.

		UNSIGNALIZED	SIGNALIZED
LOS	CHARACTERISTICS	TOTAL DELAY (SEC)	TOTAL DELAY (SEC)
А	Little or no delay	≤ 10.0	≤ 10.0
В	Short delays	10.1-15.0	10.1-20.0
С	Average delays	15.1-25.0	20.1-35.0
D	Long delays	25.1-35.0	35.1-55.0
E	Very long delays	35.1-50.0	55.1-80.0
F	Extreme delays	> 50.0	> 80.0

FIGURE 11: LEVEL-OF-SERVICE CRITERIA FOR SIGNALIZED AND UNSIGNALIZED INTERSECTIONS

The delay thresholds for LOS at signalized and unsignalized intersections differ because of the driver's expectations of the operating efficiency for the respective traffic control conditions. According to HCM procedures, an overall LOS cannot be calculated for two-way stop-controlled intersections because not all movements experience delay. In signalized and all-way stop-controlled intersections, all movements experience delay and an overall LOS can be calculated.

The VTrans policy on level of service is:

- Overall LOS C should be maintained for state-maintained highways and other streets accessing the state's facilities
- Reduced LOS may be acceptable on a case-by-case basis when considering, at minimum, current and future traffic volumes, delays, volume to capacity ratios, crash rates, and negative impacts as a result of improvement necessary to achieve LOS C.
- LOS D should be maintained for side roads with volumes exceeding 100 vehicles/hour for a single lane approach (150 vehicles/hour for a two-lane approach) at two-way stop-controlled intersections. No LOS criteria are in effect for volumes less than these.

¹⁴ The HCM 2010 does not provide methodologies for calculating intersection delays at certain intersection types including signalized intersections with exclusive pedestrian phases and signalized intersections with non NEMA-standard phasing. Because of these limitations, HCM 2000 methodologies are employed where necessary.

For stop controlled side approaches with volumes lower than those noted above, the volume to capacity ratios (V/C) should remain below 0.85 on side road approaches with volumes less than these.

Detailed Synchro LOS worksheets are attached at the end of this memo.

5.2 | LEVEL-OF-SERVICE RESULTS

The Highway Capacity Manual congestion reports within Synchro (v8), a traffic analysis software package from Trafficware, routinely relied upon by transportation engineering professionals, were used to assess traffic congestion at the study intersections. Figures 12 and 13 presents the LOS, delay (seconds/vehicle), and volume/capacity ratio¹⁵ (v/c) results during the weekday AM and PM peak hour.

FIGURE 12: AM PEAK HOUR LOS RESULTS

		AM Peak Hour											
		2017 No Build			2017 Build			2022 No Build			2022 Build		ild
Intersections		LOS	Dela	v/c	LOS	Dela	v/c	LOS	Dela	v/c	LOS	Dela	v/c
scvc Perimeter Road/Blakely Road													
-	NB Left, exiting Development	С	24.7	0.09	D	25.1	0.10	D	26.2	0.10	D	26.5	0.11
	NB Right, exiting Development	В	13.3	0.05	В	13.4	0.06	В	13.7	0.06	В	13.7	0.06
	WB Left, on Blakely	Α	9.2	0.06	Α	9.2	0.06	Α	9.3	0.06	Α	9.3	0.06
scvc Green/Blakely Road													
-	NB Right exiting Development	В	13.6	0.08	В	13.7	0.08	В	14.0	0.08	В	14.0	0.09
SCVC Exit/US7													
	EB Right from Development	D	33.7	0.36	D	34.8	0.39	Е	36.9	0.39	E	39.2	0.43

FIGURE 13: PM PEAK HOUR LOS RESULTS

	PM Peak Hour											
	2017 No Build			2017 Build			2022 No Build			2022 Build		ild
Intersections	LOS	Dela	v/c	LOS	Dela	v/c	LOS	Dela	v/c	LOS	Dela	v/c
scvc Perimeter Road/Blakely Road												
NB Left, exiting Development	D	33.1	0.17	D	34.7	0.19	Е	36.5	0.20	Е	38.5	0.22
NB Right, exiting Development	В	11.9	0.06	В	12.0	0.07	В	12.2	0.07	В	12.2	0.07
WB Left, on Blakely	Α	9.0	0.12	Α	9.0	0.13	Α	9.1	0.13	Α	9.1	0.13
scvC Green/Blakely Road												
NB Right exiting Development	В	11.6	0.03	В	11.6	0.03	В	11.7	0.03	В	11.8	0.04
SCVC Exit/US7												
EB Right from Development	В	12.1	0.06	В	12.2	0.07	В	12.4	0.07	В	12.4	0.07

It should be noted that the delay exiting the US7 access in the AM Peak, and the Perimeter Rd access in PM Peak are significant, however the volumes on these approaches are well below the threshold for the VTrans LOS policy guidelines, and the volume to capacity ratios are well within reason.

6.0 CRASH HISTORIES

VTrans maintains a statewide database of all reported crashes along all state highways and federal aid road segments. Crash histories were reviewed for the most recent 5 years of available data (January 1, 2012 through December 31, 2016). Within this 5 year period, 3 crash was reported on Blakely Road

 $^{^{15}}$ v/c, also referred to as the degree of saturation is the fraction of actual volume (v) to theoretical capacity to process vehicles for the given study period (c), thus a v/c value of 1.0 or greater indicates the traffic movement or intersection is at or over capacity.

within the design stopping sight distance (250 feet at 35 mph) of either project access point (east of the Green).

The Vermont Agency of Transportation maintains a list of high crash locations (HCL), which are intersections and roadway segments that have high crash rates over five years compared to other intersections or segments with similar functional classification and traffic levels. In order to be classified as a High Crash Location, an intersection or road segment (0.3 mile segments) must have more than 5 crashes in 5 years and must have an actual crash rate higher than the critical crash rate calculated by VTrans for similar roadways.

There are no high crash locations in the immediate vicinity of this project access points, however the intersection of Blakely Road, Severance Road and US7 is listed as a high crash intersection. This intersection is slated for reconstruction as part of the FY17-20 State Transportation Improvement Program (STIP)¹⁶.

7.0 TRAFFIC SIGNAL WARRANTS

There are several applicable traffic signal warrants to review in the case of the intersection of Perimeter Drive (a.k.a. West Road) and Blakely Road:

- Peak Hour Volumes
- 4 Hour Volumes
- 8 Hour Volumes
- Crash Experience

The lowest threshold for the volume warrants are not met, as the peak volume expected on the Perimeter Drive approach is 67 vehicles in the 2022 PM Peak hour. The threshold for the Peak, 4 hour and 8 hour warrants for the minor approach (such as Perimeter Drive) is 150, 115, and 100 vehicles per hour respectively. To meet the Crash Experience warrant there must be five or more crashes in a 12 month period (among other criteria). There was one crashes within stopping sight distance of this intersection within the last 5 years.

8.0 CONCLUSIONS

The project as proposed will include 36 new apartments, which will generate approximately 18 trips during the weekday AM peak hour, 22 trips in the PM Peak Hour, and a total of 239 daily trips.

The three project access points were evaluated for capacity and performance, and were found to meet VTrans guidelines for acceptable levels of service. Volume to capacity ratios in all cases are also acceptable. In addition, little change in delay or capacity was realized at these intersections due to the proposed additional housing.

A review of traffic signal warrants reveals that warrants will not be met in the build condition, even with additional traffic expected in the future planning year (2022).

¹⁶ VTrans Project Number STPG 5600(17)

Based on the analysis presented above we conclude that the proposed additional housing, as proposed, will not cause unreasonable congestion or unsafe conditions on the local roadway network and will not adversely impact the public investment in roadway infrastructure in the adjacent area.

END OF MEMO

Attachments:

Turning movement volume development

- AM Peak Hour
- PM Peak Hour

Synchro traffic analysis worksheets:

- 2016 AM Peak No-build
- 2016 AM Peak Build
- 2016 PM Peak No-build
- 2016 PM Peak Build
- 2021 AM Peak No-build
- 2021 AM Peak Build
- 2021 PM Peak No-build
- 2021 PM Peak Build

(30 pages total)

SRPUD Trip Generation Worksheet

E Land Use Description Trip Rate* PM Peak daily AM Peak daily Restaurant of the Sq. FL Sq	Description Trip Rate* Trip Rate* External Trips Passby Trips National Mean Marea Faile Faile Faile Passby Pasby Passby Passby<	Severance Road PUD (Sunderland ref: progress plan by CEA 4-12-19	_	Voods) Tr	ip Genera	Severance Road PUD (Sunderland Woods) Trip Generation Summary ref: progress plan by CEA 4-12-19	nary											6/20/2019	
Jacratic Retail Retail <th retai<="" td=""><td>Passby AM Peak AM Peak AM Peak Peask Peak Peak Rate 14 17 220 0 0 0 6 6 5 5 39 0 0 0 5 34% 5 22 218 3 11 10 5 34% 5 22 218 3 11 6 8 43% 23 21 109 1 16 10 0 0 8 43% 23 214 174 0 0 0 0 0 13 16 190 0</td><td>L</td><td>T</td><td>1.00</td><td>E Land Use</td><td>Descriptio</td><td>uc</td><td></td><td></td><td>Trip Rate*</td><td></td><td></td><td>ú</td><td>kternal Trip</td><td>S</td><td></td><td>Passby Tri</td><td>S</td></th>	<td>Passby AM Peak AM Peak AM Peak Peask Peak Peak Rate 14 17 220 0 0 0 6 6 5 5 39 0 0 0 5 34% 5 22 218 3 11 10 5 34% 5 22 218 3 11 6 8 43% 23 21 109 1 16 10 0 0 8 43% 23 214 174 0 0 0 0 0 13 16 190 0</td> <td>L</td> <td>T</td> <td>1.00</td> <td>E Land Use</td> <td>Descriptio</td> <td>uc</td> <td></td> <td></td> <td>Trip Rate*</td> <td></td> <td></td> <td>ú</td> <td>kternal Trip</td> <td>S</td> <td></td> <td>Passby Tri</td> <td>S</td>	Passby AM Peak AM Peak AM Peak Peask Peak Peak Rate 14 17 220 0 0 0 6 6 5 5 39 0 0 0 5 34% 5 22 218 3 11 10 5 34% 5 22 218 3 11 6 8 43% 23 21 109 1 16 10 0 0 8 43% 23 214 174 0 0 0 0 0 13 16 190 0	L	T	1.00	E Land Use	Descriptio	uc			Trip Rate*			ú	kternal Trip	S		Passby Tri	S
Sq. F. Sq. F. Sq. F. Sq. F. Sq. F. AM Peak Mail AM Peak Meak PM Peak Peak PM Peak	Rate AM Peak Pail AM Peak Pull Peak 14 17 220 0 0 5 5 5 34 0 0 0 5 5 5 39 0 0 0 0 5 34% 5 222 218 3 11 16 5 34% 5 22 218 3 11 16 6 7 8 43% 5 22 218 3 11 16 8 43% 5 22 218 3 11 16 8 43% 3 15 190 0 0 0 13 15 190 0 0 0 0 0 147 48 204 0 0 0 0 0 19 19 19 16 0 0 0 0	Mid-rise Apartment L			General Office	Daycare		Restaurant				Passby							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ITE LUC Units Units	Units		Sq. Ft.	Sq. Ft.	Sq. Ft.	Sq. Ft.	AM Peak	PM Peak	daily	Rate	AM Peak	PM Peak	daily	AM Peak	PM Peak	daily	
1 1.16 1.15 9.74 6 6 54 0 0 1 1.16 1.15 9.74 5 5 39 0 0 0 1 1.16 1.15 9.74 5 5 5 39 0 0 0 1 8.730 0.94 3.81 37.75 34% 5 2 218 3 11 1 4.360 0.94 3.81 37.75 34% 5 22 218 3 11 1 4.360 9.94 9.77 112.18 43% 23 259 17 17 17 1 4.360 9.94 9.77 112.18 43% 23 259 17 17 17 1 1 0.36 0.44 5.44 13 16 196 0 0 0 1 1 1.12 47.62 7 47 13 16 196 0 0 0 1 1 1.12 47.62 9.74 13 17 17 17 17 1 1 1.16 1.16 9.74 13 13 16<	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	30	30	-					0.46	0.56	7.32		14	17	220	0	0	0	
1 1.16 1.15 9.74 5 5 39 0 <th< td=""><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td></td><td></td><td></td><td>5,540</td><td></td><td></td><td></td><td>1.16</td><td>1.15</td><td>9.74</td><td></td><td>9</td><td>9</td><td>54</td><td>0</td><td>0</td><td>0</td></th<>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				5,540				1.16	1.15	9.74		9	9	54	0	0	0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				4,030				1.16	1.15	9.74		5	5	39	0	0	0	
8,730 0.94 3.81 37.75 34% 5 22 218 3 11 109 1 6 1 4,380 0.94 3.81 37.75 34% 3 11 109 1 6 7 1 4,380 0.94 3.81 37.75 34% 3 11 109 1 6 7 1 1 0.36 0.44 5.44 13 15 190 0	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16							0.36	0.44	5.44		9	7	87	0	0	0	
4,380 0.94 3.81 37.75 34% 3 11 109 1 6 1 4,050 9.94 9.77 112.18 43% 23 259 17 17 17 17 1 1 0.36 0.44 5.44 13 15 190 0 0 0 1 1 0.36 0.44 5.44 13 12 14 174 0 0 0 0 4,275 1 11 11.12 47.62 13 15 19 161 0 <t< td=""><td>5 34% 3 11 109 1 6 8 43% 23 23 23 259 17 17 8 43% 23 23 23 23 259 17 17 13 15 196 0 0 0 0 13 12 14 174 0 0 0 19 19 19 161 0 0 0 19 19 161 0 0 0 191 231 234 22 34 191 231 234 22 34 INAL TRIPS 145 156 1594</td><td></td><td></td><td></td><td></td><td></td><td>8,730</td><td></td><td>0.94</td><td>3.81</td><td>37.75</td><td>34%</td><td>5</td><td>22</td><td>218</td><td>e</td><td>11</td><td>112</td></t<>	5 34% 3 11 109 1 6 8 43% 23 23 23 259 17 17 8 43% 23 23 23 23 259 17 17 13 15 196 0 0 0 0 13 12 14 174 0 0 0 19 19 19 161 0 0 0 19 19 161 0 0 0 191 231 234 22 34 191 231 234 22 34 INAL TRIPS 145 156 1594						8,730		0.94	3.81	37.75	34%	5	22	218	e	11	112	
1 4,050 9.94 9.77 112.18 43% 23 259 17 17 17 1 10 0.36 0.44 5.44 13 16 196 0 0 0 1 0.36 0.44 5.44 5.44 13 16 196 0 0 0 1 0.36 0.44 5.44 5.44 13 14 17 0 0 0 4.275 1 1 1.12 47.62 14 14 14 0 0 0 4.275 1 1 1.15 9.74 19 19 161 0 0 4.275 1 1.16 1.15 9.74 19 19 161 0 0 4.275 1 1.16 1.16 1.15 9.74 19 161 0 0 4.275 13,110 4,05 0.36 0.44 5.44 231 231 234 23 4.275 13,110 4,05 156 0.44 5.44 23 234 23 4.275 13,110 4,05 168 166 560 0 0 <td>8 43% 23 23 259 17 17 17 13 16 196 0 0 0 13 15 190 0 0 0 13 15 190 0 0 0 13 15 14 174 0 0 0 13 12 47 48 204 0 0 19 19 161 0 0 0 19 19 161 0 0 0 191 201 205 245 0 0 191 231 2234 22 34 201 38 66 550 8mal capture¹ 38 66 550 RNAL TRIPS 145 156 1594</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4,380</td> <td></td> <td>0.94</td> <td>3.81</td> <td>37.75</td> <td>34%</td> <td>3</td> <td>11</td> <td>109</td> <td>Ļ</td> <td>9</td> <td>56</td>	8 43% 23 23 259 17 17 17 13 16 196 0 0 0 13 15 190 0 0 0 13 15 190 0 0 0 13 15 14 174 0 0 0 13 12 47 48 204 0 0 19 19 161 0 0 0 19 19 161 0 0 0 191 201 205 245 0 0 191 231 2234 22 34 201 38 66 550 8mal capture ¹ 38 66 550 RNAL TRIPS 145 156 1594						4,380		0.94	3.81	37.75	34%	3	11	109	Ļ	9	56	
1 0.36 0.44 5.44 13 16 196 0 <	13 16 196 0 0 0 13 15 190 0 0 0 0 13 15 190 0 0 0 0 0 14 17 14 174 0 0 0 0 19 19 16 16 24 0 0 0 19 19 161 0 0 0 0 0 19 20 245 0 0 0 0 0 191 231 234 23 34 23 34 TDM credit 8 9 89 89 88 88 smal capture ¹ 38 66 550 156 1594 34 RNAL TRIPS 145 156 1594 156 1594 156 1594							4,050	9.94	9.77	112.18	43%	23	23	259	17	17	195	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	13 15 190 0 0 0 2 12 14 174 0 0 0 2 47 48 204 0 0 0 3 47 48 204 0 0 0 13 19 161 0 0 0 0 14 16 245 0 0 0 0 191 231 234 23 34 34 100 38 66 550 34 34 RNAL TRIPS 145 156 1594 34	36							0.36	0.44	5.44		13	16	196	0	0	0	
4,275 0.36 0.44 5.44 12 14 174 0 0 4,275 11 11.12 47.62 47 48 204 0 0 1 11.12 47.62 19 19 19 161 0 0 0 1 1.1.15 9.74 0.74 19 161 0 0 0 1 1.1.6 1.15 9.74 19 19 161 0 0 1 1.16 1.15 9.74 16 20 23 0 0 1 1.16 1.16 1.15 9.74 16 20 24 0 0 4,275 13,110 4,050 4.44 16 20 234 23 34 4,275 13,110 4,050 4.65 145 156 154 23 34	12 14 174 0 10 10 10 10	35							0.36	0.44	5.44		13	15	190	0	0	0	
4,275 11 11.12 47.62 47 48 204 0 0 11 11.12 9.74 19 19 161 0 0 0 11 1.16 1.15 9.74 9 9 79 0 0 0 11 1.16 1.15 9.74 5.44 5.42 0 0 0 0 12 0.36 0.44 5.44 5.43 16 20 26 0 0 4,275 13,110 4,050 4% TDM credit 8 9 89 53 4,275 13,110 4,050 4% TDM credit 8 66 550 16ss internal capture ⁸ 38 66 550 170TAL EXTERNAL TRIPS 145 156 154	2 47 48 204 0 <td>32</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.36</td> <td>0.44</td> <td>5.44</td> <td></td> <td>12</td> <td>14</td> <td>174</td> <td>0</td> <td>0</td> <td>0</td>	32							0.36	0.44	5.44		12	14	174	0	0	0	
1:16 1:15 9.74 19 161 0 0 1:16 1.15 9.74 5.44 19 161 0 0 0 1:16 1.15 9.74 5.44 16 179 0 0 0 4,275 13,110 4,050	19 19 161 0 <td></td> <td></td> <td></td> <td></td> <td>4,275</td> <td></td> <td></td> <td>11</td> <td>11.12</td> <td>47.62</td> <td></td> <td>47</td> <td>48</td> <td>204</td> <td>0</td> <td>0</td> <td>0</td>					4,275			11	11.12	47.62		47	48	204	0	0	0	
116 1.15 9.74 9 9 79 0 0 1 4,275 13,110 4,050 0.36 0.44 5.44 16 20 245 0 0 0 16 17 21 223 234 16 17 17 17 17 16 17 23 22 34 16 16 16 20 17 21 223 22 34 16	9 9 79 0				16,480				1.16	1.15	9.74		19	19	161	0	0	0	
1 0.36 0.44 5.44 16 20 245 0 0 1 4,275 13,110 4,050 4% TDM credit 8 9 89 22 34 elss internal capture [#] 38 66 550 34 TOTAL EXTERNAL TRIPS 145 156 1594	16 20 245 0 0 0 1 TDM credit 8 9 89 34 22 34 TDM credit 8 9 89 89 89 81 156 1594 22 34 RNAL TRIPS 145 156 1594 <td></td> <td></td> <td></td> <td>8,130</td> <td></td> <td></td> <td></td> <td>1.16</td> <td>1.15</td> <td>9.74</td> <td></td> <td>9</td> <td>6</td> <td>79</td> <td>0</td> <td>0</td> <td>0</td>				8,130				1.16	1.15	9.74		9	6	79	0	0	0	
4,275 13,110 4,050 4% TDM credit 8 9 89 89 88 10TAL EXTERNAL TRIPS 145 156 1594 22 34	191 231 22 34 TDM credit 8 9 89 9 89 smal capture ¹ 38 66 550 550 RNAL TRIPS 145 156 1594	45							0.36	0.44	5.44		16	20	245	0	0	0	
4% TDM credit 8 9 less internal capture [®] 38 66 TOTAL EXTERNAL TRIPS 145 156	TDM credit 8 9 amal capture ¹ 38 66 RNAL TRIPS 145 156	164 30	30		34,180	4,275	13,110	4,050					191	231	2234	22	34	364	
less internal capture [®] 38 66 TOTAL EXTERNAL TRIPS 145 156	ernal capture [#] 38 66 RNAL TRIPS 145 156										F	DM credit	8	6	89				
TOTAL EXTERNAL TRIPS 145 156	RNAL TRIPS 145 156										less interna	al capture [#]	38	66	550				
	al Capture Estimation Tool, daily trips assume pm peak is 12% (K=DHV/ADT)	*Trip rates estimated from ITE Trip Generation Manual 10th edition	ation Manua		1 10th editic	uc				TOTA	L EXTERN	AL TRIPS	145	156	1594				

Severance Road PUD (Sunderland Woods) Distribution Summary (less TDM trips)

٧L
٦

ak	Ξ								_			
PM Peak F	EXIT	84%	39%	37%	52%	38%	53%		(MDT sse	l capture [#]	Total Passby Trips	nal Trips
	ENTER	16%	61%	63%	48%	62%	47%		Total Trips (less TDM)	less internal capture [*]	Total Pas	Total External Trips
								•	Tot	le		Ĕ
	PBY EXIT				2	7						
	PBY ENT. PBY EXIT				2	6			204			145
sd	EXIT	5	42	10	4	17	21		101	19	6	73
AM Peak Hour - Total Trips	ENTER	33	15	с	7	21	24		103	19	12	72
^p eak Hou	EXIT	14%	74%	<i>17%</i>	38%	45%	47%		ss TDM)	capture#	by Trips	al Trips
AM F	ENTER	86%	26%	23%	62%	55%	53%		Total Trips (less TDM)	less internal capture [*]	Total Passby Trips	Total External Trips
Category	daily	333	892	220	495	454	204	2597	To	Ā		F
Fotal Trips by Use Category	ΡM	39	72	17	50	40	48	265				
Total Trip	AM	40	59	14	12	40	47	212				
		office	mid-rise apartments	low-rise residential	retail	restaurant	other (daycare)					

internal capture estimated using NCHRP 8-51 Internal Capture Estimation Tool

Severance Road PUD (Sunderland Woods) Land Use Summary

	1										
ration	Daily	892	220	333	204	454	495	2597	89	550	1594
Vehicle Trip Generation	M Peak PM Peak	72	17	39	48	40	50	265	6	99	156
Vehicle	AM Peak	59	14	40	47	40	12	212	8	38	145
	Units Use	164 apartments	30 townhouses	34,180 office	4,275 daycare	4,050 restaurant	13,110 retail	-	TDM credit	less internal capture#	OTAL EXTERNAL TRIPS
	Building #	3, 5, 6, 7, 11	n/a	1, 2, 9, 10 34	8	4	3				F

6/20/19 Severance Road PUD TIS Appendices

PBY ENT. PBY EXIT

EXIT

ENTER

PM Peak Hour

8 9

° 0

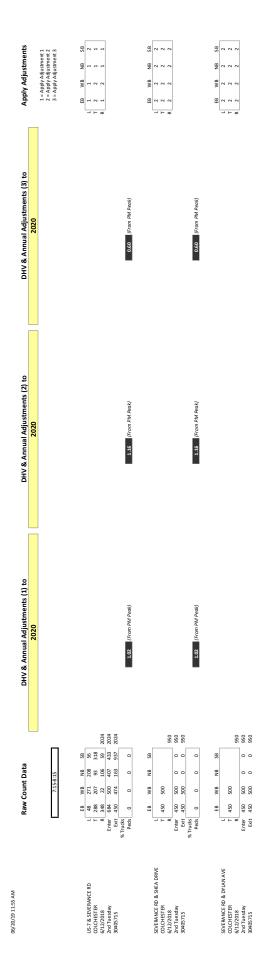
32 27 6 5 14 25 25

24 5 23 4 5 0 5 5 5 4 5 0

156

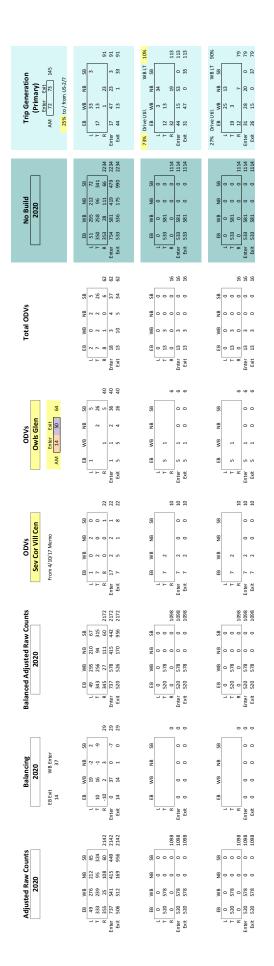
õ

RSG


255

128 33 15

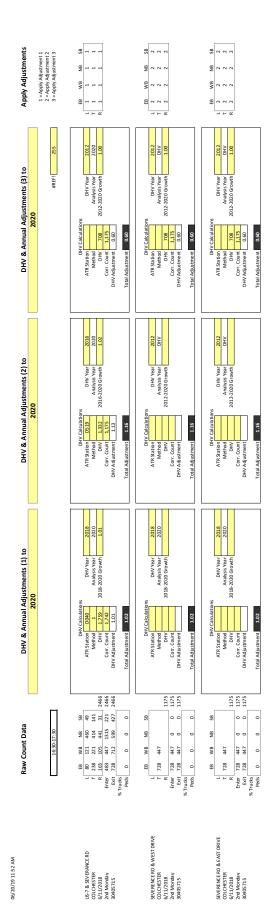
126 33 76 76



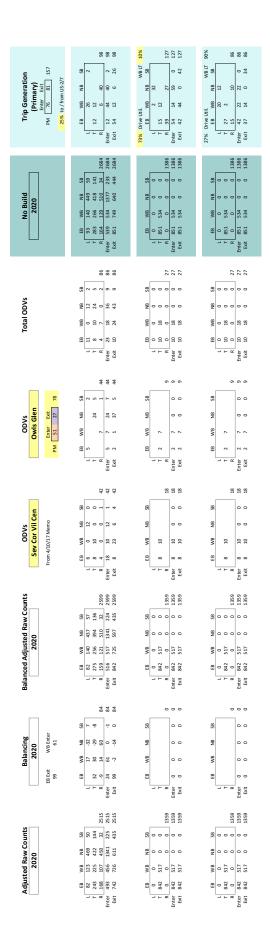
Volume Development and Trip Distribution Worksheets

A17

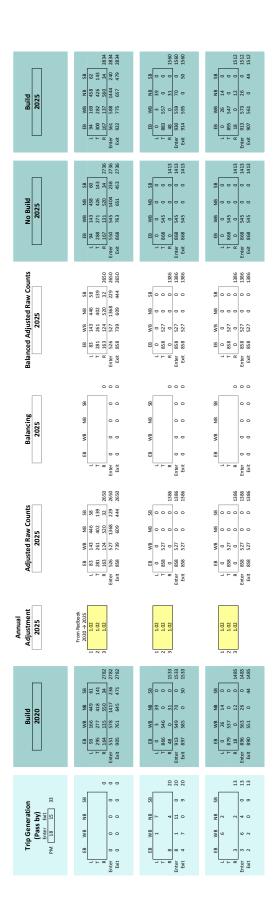
Page 1 of 3



A18


Page 2 of 3

Build 2025	EB W0 NB SB 1 22 34 216 77 1 27 276 33 216 1 27 276 33 212 1 800 0 37 57 238 Ener 786 639 451 432 238 Ener 786 639 451 432 238	EB WB NB SB 1 0 3 70 0 1 55 65 0 0 1 35 66 0 1260 Enter 55 64 0 1260 Enter 55 642 0 0 1260	EB WB NB SB L 0 31 34 0 T 563 535 0 0 R 13 0 8 1224 Enter 575 652 2 0 1224 Enter 571 659 0 44 1224
No Build 2025	EB WB MB S3 1 32 301 2.6 73 1 357 301 2.6 73 R 357 301 3.6 471 R 357 353 341 471 Enter 7.69 392 4.38 2.277 Enter 7.69 392 4.38 2.277 Enter 7.69 392 4.38 2.777	FB WB HB 59 1 0 0 0 0 1 544 92 0 0 1136 Enter 544 932 0 0 1136	FB WB NB SB 1 0 0 0 0 1 5.44 592 0 0 1 5.44 592 0 0 1356 Enter 5.44 592 0 0 1356 Enter 5.44 592 0 1136
Balanced Adjusted Raw Counts 2025	IB WB NB SB 1 50 301 214 68 1 309 301 214 68 1 329 301 313 61 2325 Enter 739 301 433 431 2325 Enter 731 560 433 431 2325	EB WB NB SB 1 0 0 0 0 1 23 590 0 0 1120 Ent 531 590 0 0 1120 Ent 531 590 0 0 1120	FB W6 NB SB 1 0 0 0 0 1 531 590 0 1120 Roter 531 590 0 1120 Exter 531 590 0 0 1220
Balancing 2025	EB WB NB SB 1 1 0 <th>EB MB NB SB 1 1 0<th>EB WB NB 58 T R Exite Exite C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th></th>	EB MB NB SB 1 1 0 <th>EB WB NB 58 T R Exite Exite C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th>	EB WB NB 58 T R Exite Exite C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Adjusted Raw Counts 2025	EB WB H0 50 1 50 201 2.4 65 1 3-0 2.11 2.4 65 1 3-0 2.21 2.4 1.3 1 3-0 2.11 2.4 6.1 1 3-0 2.21 2.4 1.3 Enter 7.31 5.6 4.2 5.1 2.215 Enter 7.31 5.60 4.23 5.1 2.215 Enter 7.31 5.66 1.73 9.7 2.215	EB WB HB SB 1 0 0 0 0 1 531 90 0 1120 Enter 531 90 0 0 1120 Enter 531 90 0 0 1120	EB WB NB SB L 0 0 0 0 T 531 590 0 0 Refer 531 590 0 0 1120 Enter 531 590 0 0 1120
Annual Adjustment 2025	1 1.02 2 1.02 3 1.02	1 1.02 2 1.02 3 1.02	1 1.02 2 1.02 3 1.02
Build 2020	EB MB MB MB 1 51 328 212 76 1 56 341 56 341 1 56 341 56 341 1 56 341 56 341 1 56 341 56 341 1 357 353 343 325 Enter 771 58 443 433 3235 Enter 777 58 443 433 3235	Ea MB HB SQ 1 0 3 37 0 1 565 0 23 0 1238 Finer 531 597 50 0 1238 Entree 531 597 50 0 1238	EB WB NB SB 1 0 31 14 05 1 522 54 0 0 1 552 54 0 0 1 1 52 24 0 0 1 1 3 0 6 1203 Enter 561 538 0 44 1203
Trip Generation (Pass by) (Pass by)	Ener 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FB WB HB SB 1 1 3 3 1 1 1 3 3 0 5 111 Exet 3 3 0 5 111	EB WB NB SB T 6 1 1 10 T 6 1 10 10 Enter 2 6 2 10 Enter 1 1 0 7 10


Page 3 of 3

Md

Page 2 of 3

Ā

Internal Capture Worksheet

	NCHRP 8-51 Internal Trip C	Cap	ture Estimation Tool	
Project Name:	Sunderland Woods		Organization:	RSG
Project Location:	Colchester, VT		Performed By:	CDM
Scenario Description:	Progress plan by CEA dated 4/12/19		Date:	5/28/2019
Analysis Year:	2019		Checked By:	
Analysis Period:	AM Street Peak Hour		Date:	

	Table 1	-A: Base Vehic	le-Trip Generation	Es	timates (Single-Use Site	e Estimate)	
Land Use	Developm	ent Data (<i>For In</i>	formation Only)			Estimated Vehicle-Trips	
Land Ose	ITE LUCs ¹	Quantity	Units	1	Total	Entering	Exiting
Office				1	38	33	5
Retail					11	7	4
Restaurant					38	21	17
Cinema/Entertainment					0		
Residential					70	18	52
Hotel				1	0		
All Other Land Uses ²					45	24	21
Total					202	103	99

		Table 2-A:	Mode Split and Veh	icle	Occupancy Estimates	i	
Land Use		Entering Tri	ps			Exiting Trips	
Land Ose	Veh. Occ.	% Transit	% Non-Motorized		Veh. Occ.	% Transit	% Non-Motorized
Office							
Retail							
Restaurant							
Cinema/Entertainment							
Residential							
Hotel							
All Other Land Uses ²							

	Table	3-A: Average L	and Use Interchan	ge Distances (Feet Walking	Distance)	
Origin (From)				Destination (To)		
Oligili (Floili)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office						
Retail						
Restaurant						
Cinema/Entertainment						
Residential						
Hotel						

		Table 4-A: I	nternal Person-Tri	o Origin-Destination Matrix	*	
Origin (From)				Destination (To)		
Oligili (Floili)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		1	3	0	0	0
Retail	1		1	0	0	0
Restaurant	5	1		0	1	0
Cinema/Entertainment	0	0	0		0	0
Residential	1	1	4	0		0
Hotel	0	0	0	0	0	

Table 5-A	: Computatio	ns Summary		Table 6-A: Interna	I Trip Capture Percentag	ges by Land Use
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips
All Person-Trips	202	103	99	Office	21%	80%
Internal Capture Percentage	19%	18%	19%	Retail	43%	50%
				Restaurant	38%	41%
External Vehicle-Trips ³	164	84	80	Cinema/Entertainment	N/A	N/A
External Transit-Trips ⁴	0	0	0	Residential	6%	12%
External Non-Motorized Trips ⁴	0	0	0	Hotel	N/A	N/A

¹Land Use Codes (LUCs) from *Trip Generation Informational Report*, published by the Institute of Transportation Engineers. ²Total estimate for all other land uses at mixed-use development site-not subject to internal trip capture computations in this estimator ³Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A ⁴Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas Transportation Institute

Project Name:	Sunderland Woods
Analysis Period:	AM Street Peak Hour

	Table 7-A: Conversion of Vehicle-Trip Ends to Person-Trip Ends								
Land Use	Tat	ole 7-A (D): Enter	ring Trips			Table 7-A (O): Exiting Trips	-A (O): Exiting Trips		
Land Use	Veh. Occ.	Vehicle-Trips	Person-Trips*]	Veh. Occ.	Vehicle-Trips	Person-Trips*		
Office	1.00	33	33]	1.00	5	5		
Retail	1.00	7	7		1.00	4	4		
Restaurant	1.00	21	21]	1.00	17	17		
Cinema/Entertainment	1.00	0	0	1	1.00	0	0		
Residential	1.00	18	18	1	1.00	52	52		
Hotel	1.00	0	0	1	1.00	0	0		

Table 8-A (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)								
Origin (From)								
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel		
Office		1	3	0	0	0		
Retail	1		1	0	1	0		
Restaurant	5	2		0	1	1		
Cinema/Entertainment	0	0	0		0	0		
Residential	1	1	10	0		0		
Hotel	0	0	0	0	0			

Table 8-A (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)								
Origin (From)				Destination (To)				
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel		
Office		2	5	0	0	0		
Retail	1		11	0	0	0		
Restaurant	5	1		0	1	0		
Cinema/Entertainment	0	0	0		0	0		
Residential	1	1	4	0		0		
Hotel	1	0	1	0	0			

	Table 9-A (D): Internal and External Trips Summary (Entering Trips)								
Destination Land Use		Person-Trip Esti	nates			External Trips by Mode*			
Destination Land Ose	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²		
Office	7	26	33	Í	26	0	0		
Retail	3	4	7		4	0	0		
Restaurant	8	13	21		13	0	0		
Cinema/Entertainment	0	0	0		0	0	0		
Residential	1	17	18		17	0	0		
Hotel	0	0	0		0	0	0		
All Other Land Uses ³	0	24	24		24	0	0		

	Table 9-A (O): Internal and External Trips Summary (Exiting Trips)							
Origin Land Lloo		Person-Trip Estii	mates			External Trips by Mode*		
Origin Land Use	Internal	External	Total	1	Vehicles ¹	Transit ²	Non-Motorized ²	
Office	4	1	5		1	0	0	
Retail	2	2	4]	2	0	0	
Restaurant	7	10	17	1	10	0	0	
Cinema/Entertainment	0	0	0	1	0	0	0	
Residential	6	46	52	1	46	0	0	
Hotel	0	0	0	1	0	0	0	
All Other Land Uses ³	0	21	21	1	21	0	0	

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A

²Person-Trips

³Total estimate for all other land uses at mixed-use development site-not subject to internal trip capture computations in this estimator *Indicates computation that has been rounded to the nearest whole number.

	NCHRP 8-51 Internal Trip Capture Estimation Tool							
Project Name:	Sunderland Woods		Organization:	RSG				
Project Location:	Colchester, VT		Performed By:	CDM				
Scenario Description:	Progress plan by CEA dated 4/12/19		Date:	5/28/2019				
Analysis Year:	Analysis Year: 2019		Checked By:					
Analysis Period:	Analysis Period: PM Street Peak Hour		Date:					

	Table 1-P: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate)							
Land Use	Developm	ent Data (For In	formation Only)		Estimated Vehicle-Trips			
Land Use	ITE LUCs ¹	Quantity	Units	1	Total	Entering	Exiting	
Office				1	38	6	32	
Retail					48	23	25	
Restaurant					39	24	15	
Cinema/Entertainment					0			
Residential					85	52	33	
Hotel					0			
All Other Land Uses ²					45	21	24	
Total					255	126	129	

	Table 2-P: Mode Split and Vehicle Occupancy Estimates							
Land Lies		Entering Trips				Exiting Trips		
Land Use	Veh. Occ.	% Transit	% Non-Motorized		Veh. Occ.	% Transit	% Non-Motorized	
Office								
Retail								
Restaurant								
Cinema/Entertainment								
Residential								
Hotel								
All Other Land Uses ²								

	Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance)						
Origin (From)	Origin (Fram) Destination (To)						
Oligili (Floili)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel	
Office							
Retail							
Restaurant							
Cinema/Entertainment							
Residential							
Hotel							

Table 4-P: Internal Person-Trip Origin-Destination Matrix*									
	Destination (To)								
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel			
Office		2	0	0	1	0			
Retail	1		7	0	7	0			
Restaurant	0	6		0	3	0			
Cinema/Entertainment	0	0	0		0	0			
Residential	1	2	3	0		0			
Hotel	0	0	0	0	0				

Table 5-P	Table 5-P: Computations Summary				Table 6-P: Internal Trip Capture Percentages by Land Use			
	Total	Entering	Exiting	Land Use	Entering Trips	Exiting Trips		
All Person-Trips	255	126	129	Office	33%	9%		
Internal Capture Percentage	26%	26%	26%	Retail	43%	60%		
				Restaurant	42%	60%		
External Vehicle-Trips ³	189	93	96	Cinema/Entertainment	N/A	N/A		
External Transit-Trips ⁴	0	0	0	Residential	21%	18%		
External Non-Motorized Trips ⁴	0	0	0	Hotel	N/A	N/A		

¹Land Use Codes (LUCs) from *Trip Generation Informational Report*, published by the Institute of Transportation Engineers. ²Total estimate for all other land uses at mixed-use development site-not subject to internal trip capture computations in this estimator ³Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P ⁴Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas Transportation Institute

Project Name:	Sunderland Woods
Analysis Period:	PM Street Peak Hour

	Та	ble 7-P: Conver	sion of Vehicle-Tr	ip E	Ends to Person-Trip End	ls	
Land Use	Table	7-P (D): Entering	g Trips		1	able 7-P (O): Exiting Trips	
Land Use	Veh. Occ.	Vehicle-Trips	Person-Trips*	1	Veh. Occ.	Vehicle-Trips	Person-Trips*
Office	1.00	6	6		1.00	32	32
Retail	1.00	23	23		1.00	25	25
Restaurant	1.00	24	24		1.00	15	15
Cinema/Entertainment	1.00	0	0		1.00	0	0
Residential	1.00	52	52		1.00	33	33
Hotel	1.00	0	0		1.00	0	0

	Table 8-P (D): Internal Pers	on-Trip Origin-De	stination Matrix (Computed	l at Origin)	
Origin (From)				Destination (To)		
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		6	1	0	1	0
Retail	1		7	1	7	1
Restaurant	0	6		1	3	1
Cinema/Entertainment	0	0	0		0	0
Residential	1	14	7	0		1
Hotel	0	0	0	0	0	

	Table 8-P (D):	Internal Person	n-Trip Origin-Desti	nation Matrix (Computed at	Destination)	
Origin (From)				Destination (To)		
Oligin (Floin)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		2	0	0	2	0
Retail	2		7	0	24	0
Restaurant	2	12		0	8	0
Cinema/Entertainment	0	1	1		2	0
Residential	3	2	3	0		0
Hotel	0	0	1	0	0	

	Tat	ole 9-P (D): Inter	nal and External T	rips	Summary (Entering Tr	ips)	
Destination Land Use	P	erson-Trip Estima	ates			External Trips by Mode*	
Destination Land Ose	Internal	External	Total	1	Vehicles ¹	Transit ²	Non-Motorized ²
Office	2	4	6		4	0	0
Retail	10	13	23		13	0	0
Restaurant	10	14	24	1	14	0	0
Cinema/Entertainment	0	0	0	1	0	0	0
Residential	11	41	52		41	0	0
Hotel	0	0	0	1	0	0	0
All Other Land Uses ³	0	21	21		21	0	0

	Та	ble 9-P (O): Interr	nal and External 1	Trips	Summary (Exiting Tri	ps)	
Origin Land Use	Pe	erson-Trip Estimat	es			External Trips by Mode*	
Origin Land Use	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²
Office	3	29	32	1 [29	0	0
Retail	15	10	25	1 [10	0	0
Restaurant	9	6	15		6	0	0
Cinema/Entertainment	0	0	0		0	0	0
Residential	6	27	33		27	0	0
Hotel	0	0	0	1 [0	0	0
All Other Land Uses ³	0	24	24	1 [24	0	0

¹ Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P
² Person-Trips
³ Total estimate for all other land uses at mixed-use development site-not subject to internal trip capture computations in this estimator
*Indicates computation that has been rounded to the nearest whole number.

Synchro and SimTraffic Reports

HCM 6th Signalized Intersection Summary 3: US-2/7 & Blakely Rd/Severance Rd

	≁	→	7	1	+	*	1	Ť	1	4	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	1	1	٦	1.		ሻ	1	1	٦	1.	
Traffic Volume (veh/h)	51	350	353	295	258	28	212	96	111	72	341	66
Future Volume (veh/h)	51	350	353	295	258	28	212	96	111	72	341	66
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	51	350	353	295	258	28	212	96	111	72	341	66
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	373	436	370	360	542	59	306	599	508	489	423	82
Arrive On Green	0.04	0.23	0.23	0.13	0.33	0.33	0.09	0.32	0.32	0.05	0.28	0.28
Sat Flow, veh/h	1781	1870	1585	1781	1658	180	1781	1870	1585	1781	1523	295
Grp Volume(v), veh/h	51	350	353	295	0	286	212	96	111	72	0	407
Grp Sat Flow(s),veh/h/ln	1781	1870	1585	1781	0	1838	1781	1870	1585	1781	0	1817
Q Serve(g_s), s	1.9	15.9	19.8	10.9	0.0	11.2	7.7	3.3	4.6	2.6	0.0	18.8
Cycle Q Clear(g_c), s	1.9	15.9	19.8	10.9	0.0	11.2	7.7	3.3	4.6	2.6	0.0	18.8
Prop In Lane	1.00		1.00	1.00		0.10	1.00		1.00	1.00		0.16
Lane Grp Cap(c), veh/h	373	436	370	360	0	600	306	599	508	489	0	505
V/C Ratio(X)	0.14	0.80	0.95	0.82	0.00	0.48	0.69	0.16	0.22	0.15	0.00	0.81
Avail Cap(c_a), veh/h	400	436	370	360	0	600	306	599	508	505	0	505
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	24.5	32.5	34.0	22.7	0.0	24.2	23.0	21.9	22.4	21.4	0.0	30.2
Incr Delay (d2), s/veh	0.2	10.3	35.0	13.9	0.0	0.6	6.5	0.6	1.0	0.1	0.0	12.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.8	8.3	11.0	5.8	0.0	4.8	3.7	1.5	1.8	1.1	0.0	9.8
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	24.7	42.9	69.0	36.7	0.0	24.8	29.5	22.5	23.3	21.6	0.0	43.2
LnGrp LOS	С	D	E	D	Α	С	С	С	С	С	Α	D
Approach Vol, veh/h		754			581			419			479	
Approach Delay, s/veh		53.9			30.8			26.3			39.9	
Approach LOS		D			С			С			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	10.2	34.8	18.0	27.0	14.0	31.0	9.6	35.4				
Change Period (Y+Rc), s	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0				
Max Green Setting (Gmax), s	5.0	28.0	12.0	21.0	8.0	25.0	5.0	28.0				
Max Q Clear Time (g_c+I1), s	4.6	6.6	12.9	21.8	9.7	20.8	3.9	13.2				
Green Ext Time (p_c), s	0.0	0.8	0.0	0.0	0.0	1.0	0.0	1.4				
Intersection Summary												
HCM 6th Ctrl Delay			39.7									
HCM 6th LOS			D									

Intersection: 3: US-2/7 & Blakely Rd/Severance Rd

Movement	EB	EB	EB	WB	WB	NB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	L	Т	R	L	TR	
Maximum Queue (ft)	204	1044	205	125	722	228	109	83	85	668	
Average Queue (ft)	59	497	180	118	336	116	44	30	51	378	
95th Queue (ft)	166	1127	256	144	746	199	94	65	105	677	
Link Distance (ft)		1494			1568		1354	1354		1282	
Upstream Blk Time (%)		1									
Queuing Penalty (veh)		0									
Storage Bay Dist (ft)	180		180	100		350			60		
Storage Blk Time (%)		31	8	41	14				2	65	
Queuing Penalty (veh)		126	32	116	40				10	47	

Intersection: 6: Shea Dr & Severance Rd

Movement
Directions Served
Maximum Queue (ft)
Average Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream Blk Time (%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (%)
Queuing Penalty (veh)

Intersection: 8: Dylan Ave & Severance Rd

Directions Served Maximum Queue (ft) Average Queue (ft) 95th Queue (ft)
Average Queue (ft) 95th Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream Blk Time (%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (%)
Queuing Penalty (veh)

Network Summary

Network wide Queuing Penalty: 372

HCM 6th Signalized Intersection Summary 3: US-2/7 & Blakely Rd/Severance Rd

06/14/2019

	٨	+	*	4	ł	*	1	1	1	*	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦.	†	1	٦	f.		ሻ	•	1	ሻ	ţ,	
Traffic Volume (veh/h)	93	283	164	140	266	129	449	418	510	59	141	34
Future Volume (veh/h)	93	283	164	140	266	129	449	418	510	59	141	34
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	93	283	164	140	266	129	449	418	510	59	141	34
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	211	459	389	289	295	143	610	710	601	281	316	76
Arrive On Green	0.05	0.25	0.25	0.06	0.25	0.25	0.21	0.38	0.38	0.04	0.22	0.22
Sat Flow, veh/h	1781	1870	1585	1781	1190	577	1781	1870	1585	1781	1456	351
Grp Volume(v), veh/h	93	283	164	140	0	395	449	418	510	59	0	175
Grp Sat Flow(s),veh/h/ln	1781	1870	1585	1781	0	1767	1781	1870	1585	1781	0	1807
Q Serve(g_s), s	3.4	11.8	7.6	5.0	0.0	19.0	16.3	15.6	25.8	2.2	0.0	7.3
Cycle Q Clear(g_c), s	3.4	11.8	7.6	5.0	0.0	19.0	16.3	15.6	25.8	2.2	0.0	7.3
Prop In Lane	1.00		1.00	1.00		0.33	1.00		1.00	1.00		0.19
Lane Grp Cap(c), veh/h	211	459	389	289	0	438	610	710	601	281	0	392
V/C Ratio(X)	0.44	0.62	0.42	0.48	0.00	0.90	0.74	0.59	0.85	0.21	0.00	0.45
Avail Cap(c_a), veh/h	215	513	435	289	0	485	610	710	601	305	0	392
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	24.8	29.3	27.8	24.4	0.0	31.9	18.8	21.7	24.8	24.7	0.0	29.7
Incr Delay (d2), s/veh	1.4	1.8	0.7	1.3	0.0	18.9	4.6	3.6	13.9	0.4	0.0	3.6
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/ln	1.5	5.4	2.9	2.2	0.0	10.1	7.1	7.3	11.5	0.9	0.0	3.5
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	26.2	31.2	28.5	25.6	0.0	50.8	23.4	25.3	38.7	25.1	0.0	33.3
LnGrp LOS	С	С	С	С	A	D	С	С	D	С	A	<u> </u>
Approach Vol, veh/h		540			535			1377			234	
Approach Delay, s/veh		29.5			44.2			29.6			31.2	
Approach LOS		С			D			С			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	9.8	39.2	11.0	27.5	24.0	25.0	10.8	27.7				
Change Period (Y+Rc), s	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0				
Max Green Setting (Gmax), s	5.0	32.0	5.0	24.0	18.0	19.0	5.0	24.0				
Max Q Clear Time (g_c+I1), s	4.2	27.8	7.0	13.8	18.3	9.3	5.4	21.0				
Green Ext Time (p_c), s	0.0	1.9	0.0	1.6	0.0	0.6	0.0	0.7				
Intersection Summary												
HCM 6th Ctrl Delay			32.7									
HCM 6th LOS			С									

Intersection: 3: US-2/7 & Blakely Rd/Severance Rd

Movement	EB	EB	EB	WB	WB	NB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	L	Т	R	L	TR	
Maximum Queue (ft)	172	276	205	124	543	329	471	323	85	231	
Average Queue (ft)	58	140	68	97	282	192	182	129	47	104	
95th Queue (ft)	122	234	163	159	500	327	432	254	94	187	
Link Distance (ft)		1494			1568		1354	1354		1282	
Upstream Blk Time (%)											
Queuing Penalty (veh)											
Storage Bay Dist (ft)	180		180	100		350			60		
Storage Blk Time (%)	0	4	0	7	41	3	0		2	24	
Queuing Penalty (veh)	0	10	0	28	57	11	1		4	14	

Intersection: 6: Shea Dr & Severance Rd

Movement
Directions Served
Maximum Queue (ft)
Average Queue (ft)
95th Queue (ft)
Link Distance (ft)
Upstream Blk Time (%)
Queuing Penalty (veh)
Storage Bay Dist (ft)
Storage Blk Time (%)
Queuing Penalty (veh)

Intersection: 8: Dylan Ave & Severance Rd

Movement		
Directions Served		
Maximum Queue (ft)		
Average Queue (ft)		
95th Queue (ft)		
Link Distance (ft)		
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Network wide Queuing Penalty: 124

HCM 6th Signalized Intersection Summary 3: US-2/7 & Blakely Rd/Severance Rd

06/20/2019

	٨	+	+	4	ł	•	1	1	1	*	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦.	•	1	٦	f.		ሻ	•	1	ሻ	ţ,	
Traffic Volume (veh/h)	51	367	353	328	271	29	212	96	135	76	341	66
Future Volume (veh/h)	51	367	353	328	271	29	212	96	135	76	341	66
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	51	367	353	328	271	29	212	96	135	76	341	66
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	373	433	367	371	565	60	307	604	512	472	417	81
Arrive On Green	0.04	0.23	0.23	0.15	0.34	0.34	0.09	0.32	0.32	0.05	0.27	0.27
Sat Flow, veh/h	1781	1870	1585	1781	1661	178	1781	1870	1585	1781	1523	295
Grp Volume(v), veh/h	51	367	353	328	0	300	212	96	135	76	0	407
Grp Sat Flow(s),veh/h/ln	1781	1870	1585	1781	0	1838	1781	1870	1585	1781	0	1817
Q Serve(g_s), s	2.0	17.8	20.9	12.9	0.0	12.2	8.0	3.5	6.0	2.9	0.0	19.9
Cycle Q Clear(g_c), s	2.0	17.8	20.9	12.9	0.0	12.2	8.0	3.5	6.0	2.9	0.0	19.9
Prop In Lane	1.00		1.00	1.00		0.10	1.00		1.00	1.00		0.16
Lane Grp Cap(c), veh/h	373	433	367	371	0	625	307	604	512	472	0	497
V/C Ratio(X)	0.14	0.85	0.96	0.89	0.00	0.48	0.69	0.16	0.26	0.16	0.00	0.82
Avail Cap(c_a), veh/h	398	433	367	371	0	625	307	604	512	484	0	497
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	26.0	34.9	36.1	23.8	0.0	24.7	23.9	23.0	23.8	23.0	0.0	32.3
Incr Delay (d2), s/veh	0.2	14.5	36.9	21.7	0.0	0.6	6.4	0.6	1.3	0.2	0.0	13.9
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	0.9	9.7	11.7	7.4	0.0	5.3	3.8	1.6	2.4	1.2	0.0	10.5
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	26.2	49.4	72.9	45.4	0.0	25.3	30.3	23.5	25.1	23.2	0.0	46.2
LnGrp LOS	С	D	E	D	A	С	С	С	С	С	A	D
Approach Vol, veh/h		771			628			443			483	
Approach Delay, s/veh		58.6			35.8			27.2			42.6	
Approach LOS		Е			D			С			D	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	10.3	36.7	20.0	28.0	15.0	32.0	9.7	38.3				
Change Period (Y+Rc), s	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0				
Max Green Setting (Gmax), s	5.0	30.0	14.0	22.0	9.0	26.0	5.0	31.0				
Max Q Clear Time (g_c+I1), s	4.9	8.0	14.9	22.9	10.0	21.9	4.0	14.2				
Green Ext Time (p_c), s	0.0	0.9	0.0	0.0	0.0	0.9	0.0	1.6				
Intersection Summary												
HCM 6th Ctrl Delay			43.2									
HCM 6th LOS			D									

HCM 6th TWSC 6: Shea Dr & Severance Rd

Intersection

Int Delay, s/veh	1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ţ,			ŧ	٦	1
Traffic Vol, veh/h	545	36	3	594	37	23
Future Vol, veh/h	545	36	3	594	37	23
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	150
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	545	36	3	594	37	23

Major/Minor	Major1	Major2	Ν	Minor1					
Conflicting Flow All	0	0 581	0	1163	563				
Stage 1	-		-	563	-				
Stage 2	-		-	600	-				
Critical Hdwy	-	- 4.12	-	6.42	6.22				
Critical Hdwy Stg 1	-		-	5.42	-				
Critical Hdwy Stg 2	-		-	5.42	-				
Follow-up Hdwy	-	- 2.218	-	3.518	3.318				
Pot Cap-1 Maneuver	-	- 993	-	215	526				
Stage 1	-		-	570	-				
Stage 2	-		-	548	-				
Platoon blocked, %	-	-	-						
Mov Cap-1 Maneuve	r -	- 993	-	214	526				
Mov Cap-2 Maneuve	r -		-	214	-				
Stage 1	-		-	570	-				
Stage 2	-		-	545	-				

Approach	EB	WB	NB
HCM Control Delay, s	0	0	20.3
HCM LOS			С

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBT	EBR	WBL	WBT
Capacity (veh/h)	214	526	-	-	993	-
HCM Lane V/C Ratio	0.173	0.044	-	-	0.003	-
HCM Control Delay (s)	25.3	12.2	-	-	8.6	0
HCM Lane LOS	D	В	-	-	А	А
HCM 95th %tile Q(veh)	0.6	0.1	-	-	0	-

HCM 6th TWSC 8: Dylan Ave & Severance Rd

Intersection						
Int Delay, s/veh	0.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ţ,		٦	1	Y	
Traffic Vol, veh/h	553	13	31	584	14	8
Future Vol, veh/h	553	13	31	584	14	8
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	120	-	0	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	553	13	31	584	14	8

Major/Minor	Major1	Major2	Minc	r1
Conflicting Flow All	0	0 566	0 12	06 560
Stage 1	-		- 5	- 06
Stage 2	-		- 6	46 -
Critical Hdwy	-	- 4.12	- 6.	42 6.22
Critical Hdwy Stg 1	-		- 5.	42 -
Critical Hdwy Stg 2	-		- 5.	42 -
Follow-up Hdwy	-	- 2.218	- 3.5	18 3.318
Pot Cap-1 Maneuver	-	- 1006	- 2	03 528
Stage 1	-		- 5	72 -
Stage 2	-		- 5	22 -
Platoon blocked, %	-	-	-	
Mov Cap-1 Maneuver	r -	- 1006	- 1	97 528
Mov Cap-2 Maneuver	r –		- 1	97 -
Stage 1	-		- 5	72 -
Stage 2	-		- 5	- 06

Approach	EB	WB	NB
HCM Control Delay, s	0	0.4	20.4
HCM LOS			С

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	255	-	-	1006	-
HCM Lane V/C Ratio	0.086	-	-	0.031	-
HCM Control Delay (s)	20.4	-	-	8.7	-
HCM Lane LOS	С	-	-	А	-
HCM 95th %tile Q(veh)	0.3	-	-	0.1	-

Intersection: 3: US-2/7 & Blakely Rd/Severance Rd

Movement	EB	EB	EB	WB	WB	NB	NB	NB	SB	SB	
Directions Served	L	Т	R	L	TR	L	Т	R	L	TR	
Maximum Queue (ft)	204	1048	205	124	802	221	108	79	84	912	
Average Queue (ft)	58	522	180	121	377	112	39	32	51	523	
95th Queue (ft)	168	1157	251	135	743	191	82	65	104	913	
Link Distance (ft)		1494			1568		1354	1354		1282	
Upstream Blk Time (%)		3									
Queuing Penalty (veh)		0									
Storage Bay Dist (ft)	180		180	100		350			60		
Storage Blk Time (%)	0	33	9	48	15				3	69	
Queuing Penalty (veh)	0	134	37	143	49				12	52	

Intersection: 6: Shea Dr & Severance Rd

Movement	WB	NB	NB
Directions Served	LT	L	R
Maximum Queue (ft)	100	66	35
Average Queue (ft)	4	28	17
95th Queue (ft)	38	58	42
Link Distance (ft)	283	322	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			150
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 8: Dylan Ave & Severance Rd

Movement	WB	NB
Directions Served	L	LR
Maximum Queue (ft)	42	53
Average Queue (ft)	12	18
95th Queue (ft)	38	45
Link Distance (ft)		320
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	120	
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Network wide Queuing Penalty: 426

HCM 6th Signalized Intersection Summary 3: US-2/7 & Blakely Rd/Severance Rd

06/14/2019

	۶	→	7	1	+	•	1	Ť	1	4	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	1	1	٦	1.		٦	1	1	٦	Þ	
Traffic Volume (veh/h)	93	295	164	166	277	135	449	418	550	61	141	34
Future Volume (veh/h)	93	295	164	166	277	135	449	418	550	61	141	34
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870	1870
Adj Flow Rate, veh/h	93	295	164	166	277	135	449	418	550	61	141	34
Peak Hour Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Percent Heavy Veh, %	2	2	2	2	2	2	2	2	2	2	2	2
Cap, veh/h	207	453	384	296	303	148	602	701	594	273	313	75
Arrive On Green	0.06	0.24	0.24	0.07	0.26	0.26	0.20	0.37	0.37	0.04	0.21	0.21
Sat Flow, veh/h	1781	1870	1585	1781	1187	579	1781	1870	1585	1781	1456	351
Grp Volume(v), veh/h	93	295	164	166	0	412	449	418	550	61	0	175
Grp Sat Flow(s),veh/h/ln	1781	1870	1585	1781	0	1766	1781	1870	1585	1781	0	1807
Q Serve(g_s), s	3.4	12.5	7.7	6.0	0.0	20.0	16.7	15.9	29.4	2.3	0.0	7.4
Cycle Q Clear(g_c), s	3.4	12.5	7.7	6.0	0.0	20.0	16.7	15.9	29.4	2.3	0.0	7.4
Prop In Lane	1.00		1.00	1.00		0.33	1.00		1.00	1.00		0.19
Lane Grp Cap(c), veh/h	207	453	384	296	0	450	602	701	594	273	0	388
V/C Ratio(X)	0.45	0.65	0.43	0.56	0.00	0.91	0.75	0.60	0.93	0.22	0.00	0.45
Avail Cap(c_a), veh/h	210	487	412	296	0	479	602	701	594	295	0	388
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	0.00	1.00	1.00	1.00	1.00	1.00	0.00	1.00
Uniform Delay (d), s/veh	25.3	30.1	28.3	24.7	0.0	32.0	19.3	22.3	26.5	25.2	0.0	30.2
Incr Delay (d2), s/veh	1.5	2.8	0.8	2.4	0.0	21.4	5.0	3.7	22.7	0.4	0.0	3.7
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/In	1.5	5.8	3.0	2.8	0.0	11.0	7.3	7.4	14.2	1.0	0.0	3.6
Unsig. Movement Delay, s/veh												
LnGrp Delay(d),s/veh	26.8	32.9	29.1	27.1	0.0	53.4	24.3	26.0	49.2	25.6	0.0	33.9
LnGrp LOS	С	С	С	С	Α	D	С	С	D	С	Α	<u> </u>
Approach Vol, veh/h		552			578			1417			236	
Approach Delay, s/veh		30.7			45.9			34.5			31.8	
Approach LOS		С			D			С			С	
Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Phs Duration (G+Y+Rc), s	9.9	39.1	12.0	27.4	24.0	25.0	10.9	28.6				
Change Period (Y+Rc), s	6.0	6.0	6.0	6.0	6.0	6.0	6.0	6.0				
Max Green Setting (Gmax), s	5.0	32.0	6.0	23.0	18.0	19.0	5.0	24.0				
Max Q Clear Time (g_c+I1), s	4.3	31.4	8.0	14.5	18.7	9.4	5.4	22.0				
Green Ext Time (p_c), s	0.0	0.3	0.0	1.5	0.0	0.6	0.0	0.5				
Intersection Summary												
HCM 6th Ctrl Delay			35.9									
HCM 6th LOS			D									

HCM 6th TWSC 6: Shea Dr & Severance Rd

Intersection							
Int Delay, s/veh	1.4						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	ł
Lane Configurations	f,			ŧ	5	1	
Traffic Vol, veh/h	866	48	3	546	39	31	
Future Vol, veh/h	866	48	3	546	39	31	
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Free	Free	Free	Free	Stop	Stop)
RT Channelized	-	None	-	None	-	None)
Storage Length	-	-	-	-	0	150	
Veh in Median Storage	e, # 0	-	-	0	0	-	•
Grade, %	0	-	-	0	0	-	
Peak Hour Factor	100	100	100	100	100	100)
Heavy Vehicles, %	2	2	2	2	2	2	2
Mvmt Flow	866	48	3	546	39	31	

Major/Minor	Major1	Major2	Minor1	
Conflicting Flow All	0	0 914	0 1442	890
Stage 1	-		- 890	-
Stage 2	-		- 552	-
Critical Hdwy	-	- 4.12	- 6.42	6.22
Critical Hdwy Stg 1	-		- 5.42	-
Critical Hdwy Stg 2	-		- 5.42	-
Follow-up Hdwy	-	- 2.218	- 3.518	3.318
Pot Cap-1 Maneuver	-	- 746	- 146	342
Stage 1	-		- 401	-
Stage 2	-		- 577	-
Platoon blocked, %	-	-	-	
Mov Cap-1 Maneuve	r -	- 746	- 145	342
Mov Cap-2 Maneuver	r -		- 145	-
Stage 1	-		- 401	-
Stage 2	-		- 574	-
Approach	EB	WB	NB	

Approach	EB	WB	NB
HCM Control Delay, s	0	0.1	28.9
HCM LOS			D

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBT	EBR	WBL	WBT
Capacity (veh/h)	145	342	-	-	746	-
HCM Lane V/C Ratio	0.269	0.091	-	-	0.004	-
HCM Control Delay (s)	38.7	16.6	-	-	9.8	0
HCM Lane LOS	E	С	-	-	А	А
HCM 95th %tile Q(veh)	1	0.3	-	-	0	-

HCM 6th TWSC 8: Dylan Ave & Severance Rd

Intersection						
Int Delay, s/veh	0.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ţ,		1	•	Y	
Traffic Vol, veh/h	879	18	26	537	14	12
Future Vol, veh/h	879	18	26	537	14	12
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	120	-	0	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	879	18	26	537	14	12

Major/Minor	Major1	1	Major2	1	Minor1	
Conflicting Flow All	0	0	897	0	1477	888
Stage 1	-	-	-	-	888	-
Stage 2	-	-	-	-	589	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	757	-	139	343
Stage 1	-	-	-	-	402	-
Stage 2	-	-	-	-	554	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuver	-	-	757	-	134	343
Mov Cap-2 Maneuver	-	-	-	-	134	-
Stage 1	-	-	-	-	402	-
Stage 2	-	-	-	-	535	-
Approach	EB		WB		NB	
HCM Control Delay, s	0		0.5		27.5	
HCM LOS	0		0.5		27.3 D	
					U	
Minor Lane/Major Mvn	nt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)		186	-	-	757	-

	100	-	- 151	-
HCM Lane V/C Ratio	0.14	-	- 0.034	-
HCM Control Delay (s)	27.5	-	- 9.9	-
HCM Lane LOS	D	-	- A	-
HCM 95th %tile Q(veh)	0.5	-	- 0.1	-

Intersection: 3: US-2/7 & Blakely Rd/Severance Rd

Movement	EB	EB	EB	WB	WB	NB	NB	NB	SB	SB
Directions Served	L	Т	R	L	TR	L	Т	R	L	TR
Maximum Queue (ft)	203	420	205	125	625	335	282	304	85	198
Average Queue (ft)	62	170	77	100	297	186	146	148	52	101
95th Queue (ft)	131	317	180	156	561	295	242	259	95	171
Link Distance (ft)		1494			1568		1354	1354		1282
Upstream Blk Time (%)										
Queuing Penalty (veh)										
Storage Bay Dist (ft)	180		180	100		350			60	
Storage Blk Time (%)	0	7	0	8	40	0			3	22
Queuing Penalty (veh)	1	17	0	32	67	1			6	13

Intersection: 6: Shea Dr & Severance Rd

Movement	WB	NB	NB
Directions Served	LT	L	R
Maximum Queue (ft)	55	86	55
Average Queue (ft)	4	30	21
95th Queue (ft)	30	66	48
Link Distance (ft)	283	322	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			150
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 8: Dylan Ave & Severance Rd

Movement	WB	NB
Directions Served	L	LR
Maximum Queue (ft)	60	57
Average Queue (ft)	17	21
95th Queue (ft)	47	49
Link Distance (ft)		320
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)	120	
Storage Blk Time (%)	0	
Queuing Penalty (veh)	0	

Network Summary

Network wide Queuing Penalty: 138

HCM 6th Signalized Intersection Summary 3: US-2/7 & Blakely Rd/Severance Rd

06/14/2019

Novement EBL EBT EBR WBL WBR NBL NBT NBR SBL SBT SBR Lane Configurations T< T< <th></th> <th>۲</th> <th>+</th> <th>*</th> <th>4</th> <th>ł</th> <th>*</th> <th>1</th> <th>1</th> <th>1</th> <th>1</th> <th>ţ</th> <th>~</th>		۲	+	*	4	ł	*	1	1	1	1	ţ	~
Traffic Volume (vehn) 52 357 360 301 263 28 216 98 113 73 347 67 Future Volume (vehn) 52 357 360 301 263 28 216 98 113 73 347 67 Future Volume (vehn) 52 357 360 301 263 28 216 98 113 73 347 67 Parking Bus, Adj 1.00 <th>Movement</th> <th></th> <th>EBT</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>SBT</th> <th></th>	Movement		EBT									SBT	
Future Volume (veh/h) 52 357 360 301 263 28 216 98 113 73 347 67 Initial Q (Qb), veh 0	•												
Initial (2(D), veh 0													
Ped-Bike Adj(A, pbT) 1.00 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>													
Parking Bus, Adj 1.00 1.0			0			0			0			0	
Work Zone On Ápproach No No No No No Adj Sat Flow, veh/hin 1870													
Adj Sat Flow, vehn/h 1870 <th< td=""><td></td><td>1.00</td><td></td><td>1.00</td><td>1.00</td><td></td><td>1.00</td><td>1.00</td><td></td><td>1.00</td><td>1.00</td><td></td><td>1.00</td></th<>		1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Adj Flow Rate, veh/h 52 357 360 301 263 28 216 98 113 73 347 67 Peack Hour Factor 1.00 1.85 1.81 1.81 1.85 1.85 1.728 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 178 1870 1585 1781													
Peak Hour Factor 1.00 1.0													
Percent Heavy Veh, % 2													
Cap, veh/h 358 487 412 568 561 475 686 624 529 516 605 513 Arrive On Green 0.04 0.26 0.02 0.03 0.30 0.30 0.33 0.33 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.33 0.33 0.05 0.32 0.32 0.33 0.33 0.05 0.32 0.32 0.33 0.33 0.05 0.32 0.33 0.33 0.05 0.32 0.33 0.33 0.55 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 <													
Arrive On Green 0.04 0.26 0.26 0.08 0.30 0.30 0.06 0.33 0.33 0.05 0.32 0.32 0.32 Sat Flow, veh/h 1781 1870 1585 3456 1870 1585 3456 1870 1585 1781 1870 1585 Grp Volume(v), veh/h 52 357 360 301 263 28 216 98 113 73 347 67 Grp Sat Flow(s), veh/h/ln 1781 1870 1585 1782 1870 1585 1781 1870 1585 Q serve(g_s), s 1.8 15.1 18.8 5.4 9.9 1.1 3.6 3.2 4.4 2.3 13.3 2.6 Prop In Lane 1.00 <td></td>													
Sat Flow, veh/h 1781 1870 1585 3456 1870 1585 1781 1870 1585 Grp Volume(v), veh/h 52 357 360 301 263 28 216 98 113 73 347 67 Grp Sat Flow(s), veh/h/ln 1781 1870 1585 1728 1870 1585 1781 1870 1585 Q Serve(g, s), s 1.8 15.1 18.8 5.4 9.9 1.1 3.6 3.2 4.4 2.3 13.3 2.6 Orge Calcar(g, c), s 1.8 15.1 18.8 5.4 9.9 1.1 3.6 3.2 4.4 2.3 13.3 2.6 Prop In Lane 1.00													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
Grp Sat Flow(s),veh/h/ln 1781 1870 1585 1728 1870 1585 1728 1870 1585 1721 1870 1585 Q Serve(g_s), s 1.8 15.1 18.8 5.4 9.9 1.1 3.6 3.2 4.4 2.3 13.3 2.6 Cycle Q Clear(g_c), s 1.8 15.1 18.8 5.4 9.9 1.1 3.6 3.2 4.4 2.3 13.3 2.6 Prop In Lane 100 1.00 1	Sat Flow, veh/h												
Q Serve(g_s), s 1.8 15.1 18.8 5.4 9.9 1.1 3.6 3.2 4.4 2.3 13.3 2.6 Cycle Q Clear(g_c), s 1.8 15.1 18.8 5.4 9.9 1.1 3.6 3.2 4.4 2.3 13.3 2.6 Prop In Lane 1.00 <td< td=""><td>Grp Volume(v), veh/h</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Grp Volume(v), veh/h												
Cycle Q Clear(g_c), s 1.8 15.1 18.8 5.4 9.9 1.1 3.6 3.2 4.4 2.3 13.3 2.6 Prop In Lane 1.00	Grp Sat Flow(s),veh/h/ln												
Prop In Lane 1.00 <td>Q Serve(g_s), s</td> <td></td>	Q Serve(g_s), s												
Lane Grp Cap(c), veh/h 358 487 412 568 561 475 686 624 529 516 605 513 V/C Ratio(X) 0.15 0.73 0.87 0.53 0.47 0.06 0.31 0.16 0.21 0.14 0.57 0.13 Avail Cap(c_a), veh/h 388 562 476 568 605 513 686 624 529 534 605 513 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Cycle Q Clear(g_c), s		15.1			9.9			3.2			13.3	
V/C Ratio(X) 0.15 0.73 0.87 0.53 0.47 0.06 0.31 0.16 0.21 0.14 0.57 0.13 Avail Cap(c_a), veh/h 388 562 476 568 605 513 686 624 529 534 605 513 HCM Platoon Ratio 1.00	•												
Avail Cap(c_a), veh/h 388 562 476 568 605 513 686 624 529 534 605 513 HCM Platoon Ratio 1.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
HCM Platoon Ratio 1.00 1.	()												
Upstream Filter(I) 1.00 1													
Uniform Delay (d), s/veh 22.0 29.3 30.6 22.2 24.7 21.6 18.8 20.3 20.7 17.8 24.3 20.7 Incr Delay (d2), s/veh 0.2 4.2 14.7 0.9 0.6 0.1 0.3 0.5 0.9 0.1 3.9 0.5 Initial Q Delay(d3), s/veh 0.0 0													
Incr Delay (d2), s/veh 0.2 4.2 14.7 0.9 0.6 0.1 0.3 0.5 0.9 0.1 3.9 0.5 Initial Q Delay(d3),s/veh 0.0 <	• • • • • • • • • • • • • • • • • • • •												
Initial Q Delay(d3),s/veh 0.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
%ile BackOfQ(50%),veh/In 0.8 7.1 8.6 2.2 4.4 0.4 1.4 1.5 1.7 0.9 6.4 1.0 Unsig. Movement Delay, s/veh 22.2 33.5 45.4 23.2 25.3 21.6 19.1 20.8 21.6 18.0 28.2 21.2 InGrp Delay(d),s/veh 22.2 33.5 45.4 23.2 25.3 21.6 19.1 20.8 21.6 18.0 28.2 21.2 InGrp LOS C C D C C B C C B C													
Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 22.2 33.5 45.4 23.2 25.3 21.6 19.1 20.8 21.6 18.0 28.2 21.2 LnGrp LOS C C D C C C B C C B C C B C C B C													
LnGrp Delay(d),s/veh 22.2 33.5 45.4 23.2 25.3 21.6 19.1 20.8 21.6 18.0 28.2 21.2 LnGrp LOS C C C D C C C B C C B C C B C C B C			7.1	8.6	2.2	4.4	0.4	1.4	1.5	1.7	0.9	6.4	1.0
LnGrp LOS C C D C C C B C C B C C B C C B C C B C C B C C B C C B C C B C C C C C C C C C Approach Vol, veh/h 769 592 427 487 487 Approach Delay, s/veh 38.3 24.0 20.1 25.7 Approach LOS D C													
Approach Vol, veh/h 769 592 427 487 Approach Delay, s/veh 38.3 24.0 20.1 25.7 Approach LOS D C C C Timer - Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 10.1 34.9 13.0 28.5 11.0 34.0 9.6 31.9 Change Period (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Green Setting (Gmax), s 5.0 28.0 7.0 26.0 5.0 28.0 3.8 11.9 Green Ext Time (p_c), s 0.0 0.8 0.0 1.7 0.0 1.9 0.0 1.4 Intersection Summary 28.5 1.0 1.9 1.4 1.4													
Approach Delay, s/veh 38.3 24.0 20.1 25.7 Approach LOS D C C C C Timer - Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 10.1 34.9 13.0 28.5 11.0 34.0 9.6 31.9 Change Period (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Green Setting (Gmax), s 5.0 28.0 7.0 26.0 5.0 28.0 5.0 28.0 Max Q Clear Time (g_c+I1), s 4.3 6.4 7.4 20.8 5.6 15.3 3.8 11.9 Green Ext Time (p_c), s 0.0 0.8 0.0 1.7 0.0 1.9 0.0 1.4 Intersection Summary 28.5 28.5 28.5 28.5 28.5 28.5	LnGrp LOS	С		D	С		С	В		С	В		<u> </u>
Approach LOS D C C C C Timer - Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 10.1 34.9 13.0 28.5 11.0 34.0 9.6 31.9 Change Period (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Green Setting (Gmax), s 5.0 28.0 7.0 26.0 5.0 28.0 28.0 Max Q Clear Time (g_c+I1), s 4.3 6.4 7.4 20.8 5.6 15.3 3.8 11.9 Green Ext Time (p_c), s 0.0 0.8 0.0 1.7 0.0 1.9 0.0 1.4	Approach Vol, veh/h					592			427			487	
Timer - Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 10.1 34.9 13.0 28.5 11.0 34.0 9.6 31.9 Change Period (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Green Setting (Gmax), s 5.0 28.0 7.0 26.0 5.0 28.0 5.0 28.0 Max Q Clear Time (g_c+I1), s 4.3 6.4 7.4 20.8 5.6 15.3 3.8 11.9 Green Ext Time (p_c), s 0.0 0.8 0.0 1.7 0.0 1.9 0.0 1.4 Intersection Summary 28.5 28.5 28.5 28.5 28.5 28.5	Approach Delay, s/veh		38.3			24.0			20.1			25.7	
Phs Duration (G+Y+Rc), s 10.1 34.9 13.0 28.5 11.0 34.0 9.6 31.9 Change Period (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Green Setting (Gmax), s 5.0 28.0 7.0 26.0 5.0 28.0 5.0 28.0 Max Q Clear Time (g_c+I1), s 4.3 6.4 7.4 20.8 5.6 15.3 3.8 11.9 Green Ext Time (p_c), s 0.0 0.8 0.0 1.7 0.0 1.9 0.0 1.4 Intersection Summary 28.5 28.5 28.5 28.5 28.5 28.5	Approach LOS		D			С			С			С	
Change Period (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 Max Green Setting (Gmax), s 5.0 28.0 7.0 26.0 5.0 28.0 5.0 28.0 Max Q Clear Time (g_c+l1), s 4.3 6.4 7.4 20.8 5.6 15.3 3.8 11.9 Green Ext Time (p_c), s 0.0 0.8 0.0 1.7 0.0 1.9 0.0 1.4 Intersection Summary 28.5 28.5 28.5 28.5 28.5 28.5	Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Max Green Setting (Gmax), s 5.0 28.0 7.0 26.0 5.0 28.0 5.0 28.0 Max Q Clear Time (g_c+l1), s 4.3 6.4 7.4 20.8 5.6 15.3 3.8 11.9 Green Ext Time (p_c), s 0.0 0.8 0.0 1.7 0.0 1.9 0.0 1.4 Intersection Summary 28.5 28.5 28.5 28.5 28.5 28.5	Phs Duration (G+Y+Rc), s	10.1	34.9	13.0	28.5	11.0	34.0	9.6	31.9				
Max Green Setting (Gmax), s 5.0 28.0 7.0 26.0 5.0 28.0 5.0 28.0 Max Q Clear Time (g_c+l1), s 4.3 6.4 7.4 20.8 5.6 15.3 3.8 11.9 Green Ext Time (p_c), s 0.0 0.8 0.0 1.7 0.0 1.9 0.0 1.4 Intersection Summary 28.5 28.5 28.5 28.5 28.5 28.5													
Max Q Clear Time (g_c+l1), s 4.3 6.4 7.4 20.8 5.6 15.3 3.8 11.9 Green Ext Time (p_c), s 0.0 0.8 0.0 1.7 0.0 1.9 0.0 1.4 Intersection Summary HCM 6th Ctrl Delay 28.5	3	5.0		7.0		5.0	28.0						
Green Ext Time (p_c), s 0.0 0.8 0.0 1.7 0.0 1.9 0.0 1.4 Intersection Summary		4.3	6.4	7.4	20.8	5.6	15.3	3.8	11.9				
HCM 6th Ctrl Delay 28.5													
HCM 6th Ctrl Delay 28.5	Intersection Summary												
				28.5									
	HCM 6th LOS			C									

Intersection: 3: US-2/7 & Blakely Rd/Severance Rd

Movement	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	NB	SB
Directions Served	L	Т	R	L	L	Т	R	L	L	Т	R	L
Maximum Queue (ft)	204	514	205	143	174	342	117	126	138	115	82	174
Average Queue (ft)	46	211	133	71	89	119	13	36	73	43	28	54
95th Queue (ft)	133	390	238	121	157	237	61	96	124	92	63	135
Link Distance (ft)		1498				1563				1325	1325	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	180		180	150	150		150	150	150			150
Storage Blk Time (%)	0	11	1	0	0	4	0	0	0	0		0
Queuing Penalty (veh)	0	44	2	0	0	12	0	0	0	0		0

Intersection: 3: US-2/7 & Blakely Rd/Severance Rd

Movement	SB	SB
Directions Served	Т	R
Maximum Queue (ft)	312	175
Average Queue (ft)	165	50
95th Queue (ft)	277	143
Link Distance (ft)	1264	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		150
Storage Blk Time (%)	10	0
Queuing Penalty (veh)	14	0

Intersection: 6: Shea Dr & Severance Rd

Movement	
Directions Served	
Maximum Queue (ft)	
Average Queue (ft)	
95th Queue (ft)	
Link Distance (ft)	
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

06/19/2019

Intersection: 8: Dylan Ave & Severance Rd

Movement		
Directions Served		
Maximum Queue (ft)		
Average Queue (ft)		
95th Queue (ft)		
Link Distance (ft)		
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Network wide Queuing Penalty: 72

HCM 6th Signalized Intersection Summary 3: US-2/7 & Blakely Rd/Severance Rd

06/14/2019

Movement EBL EBT EBR WBL WBR NBL NBR SBL SB Lane Configurations 1 <th></th>	
• • • • • • • • •	1
Traffia Valuma (vah/h) 04 288 167 142 271 121 459 426 520 60 44	
Future Volume (veh/h) 94 288 167 143 271 131 458 426 520 60 143	
	0 0
Ped-Bike Adj(A_pbT) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	1.00
Parking Bus, Adj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	
Work Zone On ApproachNoNoNo	
Adj Sat Flow, veh/h/ln 1870 1870 1870 1870 1870 1870 1870 1870	
Adj Flow Rate, veh/h 94 288 167 143 271 131 458 426 520 60 143	
Peak Hour Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	
	2 2
Cap, veh/h 243 356 301 454 355 301 1216 777 658 312 720	
Arrive On Green 0.06 0.19 0.06 0.19 0.19 0.07 0.42 0.42 0.05 0.39	
Sat Flow, veh/h 1781 1870 1585 3456 1870 1585 3456 1870 1585 1781 1870	
Grp Volume(v), veh/h 94 288 167 143 271 131 458 426 520 60 143	
Grp Sat Flow(s),veh/h/ln 1781 1870 1585 1728 1870 1585 1728 1870 1585 1781 1870	
Q Serve(g_s), s 3.5 12.2 7.9 2.7 11.3 6.0 6.0 14.2 23.5 1.6 4.2	
Cycle Q Clear(g_c), s 3.5 12.2 7.9 2.7 11.3 6.0 6.0 14.2 23.5 1.6 4.2	
Prop In Lane 1.00 1.00 1.00 1.00 1.00 1.00 1.00	1.00
Lane Grp Cap(c), veh/h 243 356 301 454 355 301 1216 777 658 312 726	
V/C Ratio(X) 0.39 0.81 0.55 0.32 0.76 0.44 0.38 0.55 0.79 0.19 0.20	
Avail Cap(c_a), veh/h 269 521 442 462 499 423 1216 777 658 339 720	
HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	
Upstream Filter(I) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	
Uniform Delay (d), s/veh 25.5 32.0 30.2 25.3 31.7 29.5 14.3 18.3 21.0 14.7 16.1	
Incr Delay (d2), s/veh 1.0 6.0 1.6 0.4 4.4 1.0 0.2 2.8 9.4 0.3 0.4	
Initial Q Delay(d3),s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
%ile BackOfQ(50%),veh/In 1.5 5.9 3.1 1.1 5.4 2.3 2.5 6.4 9.8 0.6 1.8	3 0.4
Unsig. Movement Delay, s/veh	
LnGrp Delay(d),s/veh 26.5 38.0 31.8 25.7 36.1 30.5 14.5 21.0 30.3 15.0 17.3	
LnGrp LOS C D C C D C B C C B E	
Approach Vol, veh/h 549 545 1404 23	
Approach Delay, s/veh 34.1 32.0 22.3 16.5	5
Approach LOS C C E	3
Timer - Assigned Phs 1 2 3 4 5 6 7 8	
Phs Duration (G+Y+Rc), s 9.7 40.3 10.8 21.7 12.0 38.0 10.8 21.7	
Change Period (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	
Max Green Setting (Gmax), s 5.0 33.0 5.0 23.0 6.0 32.0 6.0 22.0	
Max Q Clear Time (g_c+I1), s 3.6 25.5 4.7 14.2 8.0 6.2 5.5 13.3	
Green Ext Time (p_c), s 0.0 2.9 0.0 1.5 0.0 0.9 0.0 1.3	
Intersection Summary	
HCM 6th Ctrl Delay 26.1	
HCM 6th LOS C	

Intersection: 3: US-2/7 & Blakely Rd/Severance Rd

Movement	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	NB	SB
Directions Served	L	Т	R	L	L	Т	R	L	L	Т	R	L
Maximum Queue (ft)	204	283	205	66	174	352	175	161	175	477	274	92
Average Queue (ft)	65	156	69	25	57	138	63	67	131	191	134	37
95th Queue (ft)	143	251	169	58	120	264	151	146	204	392	240	73
Link Distance (ft)		1468				1563				1342	1342	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	180		180	150	150		150	150	150			150
Storage Blk Time (%)		5	0		0	7	0	0	1	9		0
Queuing Penalty (veh)		14	0		0	18	0	1	4	42		0

Intersection: 3: US-2/7 & Blakely Rd/Severance Rd

Movement	SB	SB
Directions Served	Т	R
Maximum Queue (ft)	162	74
Average Queue (ft)	75	18
95th Queue (ft)	134	52
Link Distance (ft)	1264	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		150
Storage Blk Time (%)	0	
Queuing Penalty (veh)	0	

Intersection: 6: Shea Dr & Severance Rd

Movement	
Directions Served	
Maximum Queue (ft)	
Average Queue (ft)	
95th Queue (ft)	
Link Distance (ft)	
Upstream Blk Time (%)	
Queuing Penalty (veh)	
Storage Bay Dist (ft)	
Storage Blk Time (%)	
Queuing Penalty (veh)	

06/19/2019

Intersection: 8: Dylan Ave & Severance Rd

Movement		
Directions Served		
Maximum Queue (ft)		
Average Queue (ft)		
95th Queue (ft)		
Link Distance (ft)		
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		
Storage Blk Time (%)		
Queuing Penalty (veh)		

Network Summary

Network wide Queuing Penalty: 81

HCM 6th Signalized Intersection Summary 3: US-2/7 & Blakely Rd/Severance Rd

06/19/2019	06/1	9/	20	11	9
------------	------	----	----	----	---

Movement EBL EBT EBR WBL WBR NBL NBL NBR SBL SBL SBR Lane Configurations 1 4 7 347 66 334 276 30 216 98 137 77 347 67 Future Volume (veh/h) 52 374 360 334 276 30 216 98 137 77 347 67 Initial Q (Ob), veh 0<		۶	+	*	4	ł	*	1	1	1	1	Ŧ	~
Traffic Volume (veh/h) 52 374 360 334 276 30 216 98 137 77 347 67 Future Volume (veh/h) 52 374 360 334 276 30 216 98 137 77 347 67 Future Volume (veh/h) 52 374 360 334 276 30 216 98 137 77 347 67 Perklike Adj(A_pbT) 1.00 1.	Movement		EBT									SBT	SBR
Future Volume (veh/h) 52 374 360 334 276 30 216 98 137 77 347 67 Initial Q (Qb), veh 0													
Initial Q(b), ven 0													
Pack-Birke Adj(A, pbT) 1.00 <													
Parking Bus, Adj 1.00 1.0			0			0			0			0	
Work Zone On Approach No No No No No Adj Sat Flow, vehr/him 1870 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
Adj Sat Flow, veh/nim 1870 <t< td=""><td></td><td>1.00</td><td></td><td>1.00</td><td>1.00</td><td></td><td>1.00</td><td>1.00</td><td></td><td>1.00</td><td>1.00</td><td></td><td>1.00</td></t<>		1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Adj Flow Rate, veh/h 52 374 360 334 276 30 216 98 137 77 347 67 Peak Hour Factor 1.00 1.83 1.81 1.870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585													
Peak Hour Factor 1.00 1.0													
Percent Heavy Veh, % 2	•												
Cap, veh/h 349 487 413 552 562 476 685 622 527 509 605 513 Arrive On Green 0.04 0.26 0.026 0.08 0.30 0.30 0.33 0.33 0.33 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.33 0.33 0.05 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.33 0.33 0.05 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.33 2.6 Cycle Qielar((1) 0.100 1.00 </td <td></td>													
Arrive On Green 0.04 0.26 0.26 0.08 0.30 0.30 0.06 0.33 0.33 0.05 0.32 0.32 0.32 Sat Flow, veh/h 1781 1870 1585 3456 1870 1585 1870 1585 1781													
Sat Flow, veh/h 1781 1870 1585 3456 1870 1585 3456 1870 1585 1781 1870 1585 Grp Volume(V), veh/h 52 374 360 334 276 30 216 98 137 77 347 67 Grp Sat Flow(s), veh/h 1781 1870 1585 1728 1870 1585 1781 1870 1585 Qserve(g.s), s 1.8 16.0 18.8 6.1 10.5 1.2 3.6 3.2 5.5 2.5 13.3 2.6 Orge Cap(c), veh/h 349 487 413 552 552 476 685 622 527 509 605 513 Avait Cap(c, a), veh/h 378 562 476 552 605 513 685 622 527 525 605 513 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
Grp Sat Flow(s), veh/h/ln 1781 1870 1585 1728 1870 1585 1728 1870 1585 1721 133 26 Cycle Q Clear(g.c), s) n.1 1870 1585 0.7 0.1 0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	Sat Flow, veh/h		1870		3456	1870		3456				1870	1585
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Grp Volume(v), veh/h		374	360	334	276	30		98	137		347	67
Cycle Q Clear(g_c), s 1.8 16.0 18.8 6.1 10.5 1.2 3.6 3.2 5.5 2.5 13.3 2.6 Prop In Lane 1.00 <td< td=""><td>Grp Sat Flow(s),veh/h/ln</td><td>1781</td><td>1870</td><td></td><td>1728</td><td>1870</td><td>1585</td><td>1728</td><td>1870</td><td>1585</td><td>1781</td><td>1870</td><td>1585</td></td<>	Grp Sat Flow(s),veh/h/ln	1781	1870		1728	1870	1585	1728	1870	1585	1781	1870	1585
Prop In Lane 1.00 <td>Q Serve(g_s), s</td> <td></td> <td>16.0</td> <td></td> <td></td> <td>10.5</td> <td></td> <td>3.6</td> <td></td> <td>5.5</td> <td></td> <td>13.3</td> <td></td>	Q Serve(g_s), s		16.0			10.5		3.6		5.5		13.3	
Lane Grp Cap(c), veh/h 349 487 413 552 562 476 685 622 527 509 605 513 V/C Ratio(X) 0.15 0.77 0.87 0.60 0.49 0.06 0.32 0.16 0.26 0.15 0.57 0.13 Avail Cap(c_a), veh/h 378 562 476 552 605 513 685 622 527 525 605 513 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Cycle Q Clear(g_c), s	1.8	16.0	18.8	6.1	10.5	1.2	3.6	3.2	5.5	2.5	13.3	2.6
V/C Ratio(X) 0.15 0.77 0.87 0.60 0.49 0.06 0.32 0.16 0.26 0.15 0.57 0.13 Avail Cap(c_a), veh/h 378 562 476 552 605 513 685 622 527 525 605 513 HCM Platoon Ratio 1.00	Prop In Lane	1.00			1.00		1.00	1.00		1.00	1.00		1.00
Avail Cap(c_a), veh/h 378 562 476 552 605 513 685 622 527 525 605 513 HCM Platoon Ratio 1.00 <t< td=""><td>Lane Grp Cap(c), veh/h</td><td>349</td><td>487</td><td>413</td><td>552</td><td>562</td><td>476</td><td>685</td><td>622</td><td>527</td><td>509</td><td>605</td><td>513</td></t<>	Lane Grp Cap(c), veh/h	349	487	413	552	562	476	685	622	527	509	605	513
HCM Platoon Ratio 1.00 1.	V/C Ratio(X)	0.15	0.77	0.87	0.60	0.49	0.06	0.32		0.26	0.15	0.57	0.13
Upstream Filter(I) 1.00 1	Avail Cap(c_a), veh/h	378	562	476	552	605	513	685	622	527	525	605	513
Uniform Delay (d), s/veh 22.0 29.6 30.6 22.7 24.9 21.6 18.8 20.3 21.1 17.9 24.3 20.7 Incr Delay (d2), s/veh 0.2 5.5 14.6 1.9 0.7 0.1 0.3 0.5 1.2 0.1 3.9 0.5 Initial Q Delay(d3), s/veh 0.0 0	HCM Platoon Ratio	1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00
Incr Delay (d2), s/veh 0.2 5.5 14.6 1.9 0.7 0.1 0.3 0.5 1.2 0.1 3.9 0.5 Initial Q Delay(d3), s/veh 0.0	Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Q Delay(d3),s/veh 0.0 <t< td=""><td></td><td></td><td>29.6</td><td>30.6</td><td>22.7</td><td>24.9</td><td>21.6</td><td>18.8</td><td>20.3</td><td></td><td></td><td>24.3</td><td>20.7</td></t<>			29.6	30.6	22.7	24.9	21.6	18.8	20.3			24.3	20.7
%ile BackOfQ(50%),veh/ln 0.8 7.7 8.6 2.5 4.6 0.4 1.4 1.5 2.1 1.0 6.4 1.0 Unsig. Movement Delay, s/veh 22.2 35.1 45.2 24.6 25.5 21.7 19.1 20.9 22.3 18.0 28.2 21.2 LnGrp Delay(d),s/veh 22.2 35.1 45.2 24.6 25.5 21.7 19.1 20.9 22.3 18.0 28.2 21.2 LnGrp Delay(d),s/veh 22.2 35.1 45.2 24.6 25.5 21.7 19.1 20.9 22.3 18.0 28.2 21.2 LnGrp LOS C D C C C B C	Incr Delay (d2), s/veh	0.2	5.5	14.6	1.9	0.7	0.1	0.3	0.5	1.2	0.1	3.9	0.5
Unsig. Movement Delay, s/veh 22.2 35.1 45.2 24.6 25.5 21.7 19.1 20.9 22.3 18.0 28.2 21.2 LnGrp LOS C D D C C B C C B C C C B C C C C B C <td>Initial Q Delay(d3),s/veh</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td></td> <td>0.0</td> <td>0.0</td> <td></td>	Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	
LnGrp Delay(d),s/veh 22.2 35.1 45.2 24.6 25.5 21.7 19.1 20.9 22.3 18.0 28.2 21.2 LnGrp LOS C D D C C C B C C B C C C B C	%ile BackOfQ(50%),veh/In	0.8	7.7	8.6	2.5	4.6	0.4	1.4	1.5	2.1	1.0	6.4	1.0
LnGrp LOS C D D C C B C C B C C B C C B C C B C C B C C B C C B C C B C C C C C C C C C C C C D Approach Los D C	Unsig. Movement Delay, s/veh												
Approach Vol, veh/h 786 640 451 491 Approach Delay, s/veh 38.9 24.9 20.5 25.7 Approach LOS D C C C Timer - Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 10.2 34.8 13.0 28.6 11.0 34.0 9.6 32.0 Change Period (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Green Setting (Gmax), s 5.0 28.0 7.0 26.0 5.0 28.0 3.8 12.5 Green Ext Time (p_c), s 0.0 0.9 0.0 1.7 0.0 1.9 0.0 1.5 Intersection Summary 28.8 28.8 28.8 28.8 38.8 38.8 38.8	LnGrp Delay(d),s/veh	22.2		45.2		25.5	21.7	19.1	20.9		18.0	28.2	21.2
Approach Delay, s/veh 38.9 24.9 20.5 25.7 Approach LOS D C C C C Timer - Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 10.2 34.8 13.0 28.6 11.0 34.0 9.6 32.0 Change Period (Y+Rc), s 6.0 8.0 8.0 <td>LnGrp LOS</td> <td>С</td> <td>D</td> <td>D</td> <td>С</td> <td>С</td> <td>С</td> <td>В</td> <td>С</td> <td>С</td> <td>В</td> <td>С</td> <td>C</td>	LnGrp LOS	С	D	D	С	С	С	В	С	С	В	С	C
Approach LOS D C C C C Timer - Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 10.2 34.8 13.0 28.6 11.0 34.0 9.6 32.0 Change Period (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Green Setting (Gmax), s 5.0 28.0 7.0 26.0 5.0 28.0 5.0 28.0 Max Q Clear Time (g_c+I1), s 4.5 7.5 8.1 20.8 5.6 15.3 3.8 12.5 Green Ext Time (p_c), s 0.0 0.9 0.0 1.7 0.0 1.9 0.0 1.5 Intersection Summary 28.8 28.8 28.8 28.8 28.8 28.8 28.8	Approach Vol, veh/h		786			640			451			491	
Timer - Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 10.2 34.8 13.0 28.6 11.0 34.0 9.6 32.0 Change Period (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Green Setting (Gmax), s 5.0 28.0 7.0 26.0 5.0 28.0 5.0 28.0 Max Q Clear Time (g_c+11), s 4.5 7.5 8.1 20.8 5.6 15.3 3.8 12.5 Green Ext Time (p_c), s 0.0 0.9 0.0 1.7 0.0 1.9 0.0 1.5 Intersection Summary 28.8 28.8 28.8 28.8 28.8 28.8	Approach Delay, s/veh		38.9			24.9			20.5			25.7	
Phs Duration (G+Y+Rc), s 10.2 34.8 13.0 28.6 11.0 34.0 9.6 32.0 Change Period (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Green Setting (Gmax), s 5.0 28.0 7.0 26.0 5.0 28.0 5.0 28.0 Max Q Clear Time (g_c+I1), s 4.5 7.5 8.1 20.8 5.6 15.3 3.8 12.5 Green Ext Time (p_c), s 0.0 0.9 0.0 1.7 0.0 1.9 0.0 1.5 Intersection Summary 28.8 28.8 28.8 28.8 28.8 28.8	Approach LOS		D			С			С			С	
Change Period (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 Max Green Setting (Gmax), s 5.0 28.0 7.0 26.0 5.0 28.0 5.0 28.0 Max Q Clear Time (g_c+11), s 4.5 7.5 8.1 20.8 5.6 15.3 3.8 12.5 Green Ext Time (p_c), s 0.0 0.9 0.0 1.7 0.0 1.9 0.0 1.5 Intersection Summary 428.8	Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Change Period (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 Max Green Setting (Gmax), s 5.0 28.0 7.0 26.0 5.0 28.0 5.0 28.0 Max Q Clear Time (g_c+11), s 4.5 7.5 8.1 20.8 5.6 15.3 3.8 12.5 Green Ext Time (p_c), s 0.0 0.9 0.0 1.7 0.0 1.9 0.0 1.5 Intersection Summary 428.8	Phs Duration (G+Y+Rc), s	10.2	34.8	13.0	28.6	11.0	34.0	9.6	32.0				
Max Green Setting (Gmax), s 5.0 28.0 7.0 26.0 5.0 28.0 28.0 Max Q Clear Time (g_c+I1), s 4.5 7.5 8.1 20.8 5.6 15.3 3.8 12.5 Green Ext Time (p_c), s 0.0 0.9 0.0 1.7 0.0 1.9 0.0 1.5 Intersection Summary 28.8 28.8 28.8 28.8 28.8 28.8													
Max Q Clear Time (g_c+l1), s 4.5 7.5 8.1 20.8 5.6 15.3 3.8 12.5 Green Ext Time (p_c), s 0.0 0.9 0.0 1.7 0.0 1.9 0.0 1.5 Intersection Summary HCM 6th Ctrl Delay 28.8	3 (<i>)</i> ,												
Green Ext Time (p_c), s 0.0 0.9 0.0 1.7 0.0 1.9 0.0 1.5 Intersection Summary HCM 6th Ctrl Delay 28.8													
HCM 6th Ctrl Delay 28.8													
HCM 6th Ctrl Delay 28.8	Intersection Summary												
				28.8									
	HCM 6th LOS			C									

HCM 6th TWSC 6: Shea Dr & Severance Rd

Intersection

Int Delay, s/veh	1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ţ,			ŧ	٦	1
Traffic Vol, veh/h	555	36	3	605	37	23
Future Vol, veh/h	555	36	3	605	37	23
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	150
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	555	36	3	605	37	23

Major/Minor	Major1	Ν	/lajor2		Minor1	
Conflicting Flow All	0	0	591	0	1184	573
Stage 1	-	-	-	-	573	-
Stage 2	-	-	-	-	611	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	985	-	209	519
Stage 1	-	-	-	-	564	-
Stage 2	-	-	-	-	542	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuve	r -	-	985	-	208	519
Mov Cap-2 Maneuve	r –	-	-	-	208	-
Stage 1	-	-	-	-	564	-
Stage 2	-	-	-	-	539	-

Approach	EB	WB	NB
HCM Control Delay, s	0	0	20.7
HCM LOS			С

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBT	EBR	WBL	WBT
Capacity (veh/h)	208	519	-	-	985	-
HCM Lane V/C Ratio	0.178	0.044	-	-	0.003	-
HCM Control Delay (s)	26	12.3	-	-	8.7	0
HCM Lane LOS	D	В	-	-	Α	Α
HCM 95th %tile Q(veh)	0.6	0.1	-	-	0	-

HCM 6th TWSC 8: Dylan Ave & Severance Rd

Intersection						
Int Delay, s/veh	0.6					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	Þ		٦	•	Y	
Traffic Vol, veh/h	563	13	31	595	14	8
Future Vol, veh/h	563	13	31	595	14	8
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	120	-	0	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	563	13	31	595	14	8

Major/Minor	Major1	Major2		Minor1	
Conflicting Flow All	0	0 576	() 1227	570
Stage 1	-			- 570	-
Stage 2	-			- 657	-
Critical Hdwy	-	- 4.12		- 6.42	6.22
Critical Hdwy Stg 1	-			- 5.42	-
Critical Hdwy Stg 2	-			- 5.42	-
Follow-up Hdwy	-	- 2.218		- 3.518	3.318
Pot Cap-1 Maneuver	-	- 997		- 197	521
Stage 1	-			- 566	-
Stage 2	-			- 516	-
Platoon blocked, %	-	-		-	
Mov Cap-1 Maneuver	r -	- 997		- 191	521
Mov Cap-2 Maneuver	r -			- 191	-
Stage 1	-			- 566	-
Stage 2	-			- 500	-

Approach	EB	WB	NB
HCM Control Delay, s	0	0.4	20.9
HCM LOS			С

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	248	-	-	997	-
HCM Lane V/C Ratio	0.089	-	-	0.031	-
HCM Control Delay (s)	20.9	-	-	8.7	-
HCM Lane LOS	С	-	-	А	-
HCM 95th %tile Q(veh)	0.3	-	-	0.1	-

Intersection: 3: US-2/7 & Blakely Rd/Severance Rd

Movement	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	NB	SB
Directions Served	L	Т	R	L	L	Т	R	L	L	Т	R	L
Maximum Queue (ft)	182	598	205	147	174	283	122	139	148	106	88	174
Average Queue (ft)	42	235	140	69	89	122	13	33	71	38	38	51
95th Queue (ft)	122	448	245	119	155	218	56	86	122	79	76	134
Link Distance (ft)		1456				1563				1335	1335	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	180		180	150	150		150	150	150			150
Storage Blk Time (%)		14	1	0	0	4	0	0	0			0
Queuing Penalty (veh)		59	3	0	0	13	0	0	0			0

Intersection: 3: US-2/7 & Blakely Rd/Severance Rd

Movement	SB	SB
Directions Served	Т	R
Maximum Queue (ft)	316	175
Average Queue (ft)	165	41
95th Queue (ft)	269	117
Link Distance (ft)	1264	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		150
Storage Blk Time (%)	10	0
Queuing Penalty (veh)	15	0

Intersection: 6: Shea Dr & Severance Rd

Movement	WB	NB	NB
Directions Served	LT	L	R
Maximum Queue (ft)	104	66	36
Average Queue (ft)	4	26	18
95th Queue (ft)	48	55	44
Link Distance (ft)	283	317	
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)			150
Storage Blk Time (%)			
Queuing Penalty (veh)			

Intersection: 8: Dylan Ave & Severance Rd

Movement	EB	WB	NB
Directions Served	TR	L	LR
Maximum Queue (ft)	4	45	52
Average Queue (ft)	0	11	18
95th Queue (ft)	3	37	45
Link Distance (ft)	283		320
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)		120	
Storage Blk Time (%)			
Queuing Penalty (veh)			

Network Summary

Network wide Queuing Penalty: 90

HCM 6th Signalized Intersection Summary 3: US-2/7 & Blakely Rd/Severance Rd

Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations 1 <t< th=""><th></th><th>٨</th><th>-</th><th>7</th><th>4</th><th>+</th><th>•</th><th>1</th><th>t</th><th>1</th><th>1</th><th>Ŧ</th><th>~</th></t<>		٨	-	7	4	+	•	1	t	1	1	Ŧ	~
Traffic Volume (veh/n) 94 300 167 169 282 139 458 426 560 62 143 34 Future Volume (veh/n) 94 300 167 169 282 139 458 426 560 62 143 34 Future Volume (veh/n) 94 300 167 169 282 139 458 426 560 62 143 34 Parking Bus, Adj 1.00 <th< th=""><th>Movement</th><th></th><th>EBT</th><th></th><th></th><th>WBT</th><th></th><th>NBL</th><th>NBT</th><th>NBR</th><th></th><th>SBT</th><th>SBR</th></th<>	Movement		EBT			WBT		NBL	NBT	NBR		SBT	SBR
Future Volume (veh/h) 94 300 167 169 282 139 458 426 560 62 143 34 Initial Q (Qb), veh 0			†										
Initial Q(Db), veh 0	()												
Ped-Bike Adj(A, pbT) 1.00 <th< td=""><td>· · · ·</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	· · · ·												
Parking Bus, Adj 1.00 1.0			0			0			0			0	
Work Zone On Ápproach No No No No No Adj Sak Flow, veh/h/in 1870 100 1.00													
Adj Sat Flow, veh/hiln 1870 <		1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Adj Flow Rate, veh/h 94 300 167 169 282 139 458 426 560 62 143 34 Peak Hour Factor 1.00 0.06 0.20 0.06 0.20 0.06 0.20 0.09 0.40 0.40 0.40 0.50 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.57 0.44 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.75 0.44 0.3	11												
Peak Hour Factor 1.00 1.0													
Percent Heavy Veh, % 2 <th2< th=""> 2 <th2< th=""></th2<></th2<>													
Cap, veh/h 247 369 313 465 374 317 1200 755 640 300 682 578 Arrive On Green 0.06 0.20 0.06 0.20 0.02 0.02 0.00 0.40 0.40 0.40 0.40 0.55 0.36 0.37 1870 1585 1781 1870 1585 1781 1870 1585 0.34 126 7.8 3.1 11.7 6.3 6.9 14.5 26.8 1.7 4.3 1.1 Prop In Lane 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
Arrive On Green 0.06 0.20 0.20 0.06 0.20 0.20 0.09 0.40 0.40 0.05 0.36 0.36 Sat Flow, veh/h 1781 1870 1585 3456 1870 1585 3456 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 1781 1870 1585 143 10 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100													
Sat Flow, veh/h 1781 1870 1585 3456 1870 1585 1781 1870 1585 Grp Volume(v), veh/h 94 300 167 169 282 139 458 426 560 62 143 34 Grp Sat Flow(s), veh/h/ln 1781 1870 1585 1728 1870 1585 1781 1870 1585 Q Serve(g., s), s 3.4 12.6 7.8 3.1 11.7 6.3 6.9 14.5 26.8 1.7 4.3 1.1 Cycle Q Clear(g., c), s 3.4 12.6 7.8 3.1 11.7 6.3 6.9 14.5 26.8 1.7 4.3 1.1 Org Cac(c), veh/h 247 369 313 465 574 317 1200 755 640 326 682 578 VC Ratic(X) 0.38 0.81 0.53 0.36 0.75 0.44 0.38 0.56 0.87 0.21 0.01 0.0													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $													
Grp Sat Flow(s),veh/h/ln 1781 1870 1585 1728 1870 1585 1728 1870 1585 1781 1870 1585 Q Servég, s), s 3.4 12.6 7.8 3.1 11.7 6.3 6.9 14.5 26.8 1.7 4.3 1.1 Cycle Q Clear(g, c), s 3.4 12.6 7.8 3.1 11.7 6.3 6.9 14.5 26.8 1.7 4.3 1.1 Prop In Lane 100 1.00 <t< td=""><td>Sat Flow, veh/h</td><td>1781</td><td>1870</td><td>1585</td><td>3456</td><td>1870</td><td>1585</td><td>3456</td><td>1870</td><td>1585</td><td>1781</td><td>1870</td><td>1585</td></t<>	Sat Flow, veh/h	1781	1870	1585	3456	1870	1585	3456	1870	1585	1781	1870	1585
Q Serve(g_s), s 3.4 12.6 7.8 3.1 11.7 6.3 6.9 14.5 26.8 1.7 4.3 1.1 Cycle Q Clear(g_c), s 3.4 12.6 7.8 3.1 11.7 6.3 6.9 14.5 26.8 1.7 4.3 1.1 Prop In Lane 1.00 <	Grp Volume(v), veh/h	94	300	167	169	282	139	458	426	560	62	143	34
Cycle Q Clear(g_c), s 3.4 12.6 7.8 3.1 11.7 6.3 6.9 14.5 26.8 1.7 4.3 1.1 Prop In Lane 1.00 <td< td=""><td>Grp Sat Flow(s),veh/h/ln</td><td>1781</td><td>1870</td><td>1585</td><td>1728</td><td>1870</td><td>1585</td><td>1728</td><td>1870</td><td>1585</td><td>1781</td><td>1870</td><td>1585</td></td<>	Grp Sat Flow(s),veh/h/ln	1781	1870	1585	1728	1870	1585	1728	1870	1585	1781	1870	1585
Prop In Lane 1.00 <td>Q Serve(g_s), s</td> <td>3.4</td> <td>12.6</td> <td>7.8</td> <td>3.1</td> <td>11.7</td> <td>6.3</td> <td>6.9</td> <td>14.5</td> <td>26.8</td> <td>1.7</td> <td>4.3</td> <td>1.1</td>	Q Serve(g_s), s	3.4	12.6	7.8	3.1	11.7	6.3	6.9	14.5	26.8	1.7	4.3	1.1
Lane Grp Cap(c), veh/h 247 369 313 465 374 317 1200 755 640 300 682 578 V/C Ratio(X) 0.38 0.81 0.53 0.36 0.75 0.44 0.38 0.56 0.87 0.21 0.21 0.06 Avail Cap(c_a), veh/h 274 546 463 465 523 443 1200 755 640 326 682 578 HCM Platoon Ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	Cycle Q Clear(g_c), s	3.4	12.6	7.8	3.1	11.7	6.3	6.9	14.5	26.8	1.7	4.3	1.1
V/C Ratio(X) 0.38 0.81 0.53 0.36 0.75 0.44 0.38 0.56 0.87 0.21 0.21 0.01 Avail Cap(c_a), veh/h 274 546 463 465 523 443 1200 755 640 326 682 578 HCM Platoon Ratio 1.00	Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Avail Cap(c_a), veh/h 274 546 463 465 523 443 1200 755 640 326 682 578 HCM Platoon Ratio 1.00 <	Lane Grp Cap(c), veh/h	247	369	313	465	374	317	1200	755	640	300	682	578
HCM Platoon Ratio 1.00 1.	V/C Ratio(X)	0.38	0.81		0.36	0.75	0.44	0.38	0.56	0.87		0.21	0.06
Upstream Filter(I) 1.00 1	Avail Cap(c_a), veh/h	274	546	463	465	523	443	1200	755	640	326	682	578
Uniform Delay (d), s/veh 24.9 31.5 29.6 24.9 31.0 28.8 14.5 18.9 22.6 15.7 18.0 17.0 Incr Delay (d2), s/veh 1.0 5.8 1.4 0.5 3.9 1.0 0.2 3.0 15.4 0.3 0.7 0.2 Initial Q Delay(d3), s/veh 0.0 0	HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incr Delay (d2), s/veh 1.0 5.8 1.4 0.5 3.9 1.0 0.2 3.0 15.4 0.3 0.7 0.2 Initial Q Delay(d3), s/veh 0.0	Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Initial Q Delay(d3),s/veh 0.0 <t< td=""><td>Uniform Delay (d), s/veh</td><td></td><td>31.5</td><td>29.6</td><td>24.9</td><td>31.0</td><td>28.8</td><td>14.5</td><td>18.9</td><td>22.6</td><td>15.7</td><td>18.0</td><td>17.0</td></t<>	Uniform Delay (d), s/veh		31.5	29.6	24.9	31.0	28.8	14.5	18.9	22.6	15.7	18.0	17.0
%ile BackOfQ(50%),veh/ln 1.5 6.1 3.0 1.3 5.5 2.4 2.6 6.6 12.0 0.7 1.9 0.4 Unsig. Movement Delay, s/veh 25.9 37.3 31.0 25.3 34.9 29.8 14.7 22.0 38.0 16.0 18.7 17.2 LnGrp Delay(d),s/veh 25.9 37.3 31.0 25.3 34.9 29.8 14.7 22.0 38.0 16.0 18.7 17.2 LnGrp LOS C D C C C B C D B B B B Approach Vol, veh/h 561 590 1444 239 17.8 Approach LOS C C C C B D D 1.8 25.9 17.8 Approach LOS C C C C B D D D D 22.2 13.0 36.0 10.8 22.5 Change Period (Y+Rc), s 9.8 39.2 11.0 22.2 13.0 36.0 10.8 22.5 Change Period (Y+Rc), s <td>Incr Delay (d2), s/veh</td> <td>1.0</td> <td>5.8</td> <td>1.4</td> <td>0.5</td> <td>3.9</td> <td>1.0</td> <td>0.2</td> <td>3.0</td> <td>15.4</td> <td>0.3</td> <td>0.7</td> <td>0.2</td>	Incr Delay (d2), s/veh	1.0	5.8	1.4	0.5	3.9	1.0	0.2	3.0	15.4	0.3	0.7	0.2
Unsig. Movement Delay, s/veh LnGrp Delay(d),s/veh 25.9 37.3 31.0 25.3 34.9 29.8 14.7 22.0 38.0 16.0 18.7 17.2 LnGrp LOS C D C C C C D B B B B Approach Vol, veh/h 561 590 1444 239 Approach Delay, s/veh 33.5 31.0 25.9 17.8 Approach LOS C C C B C B Timer - Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 9.8 39.2 11.0 22.2 13.0 36.0 10.8 22.5 Change Period (Y+Rc), s 6.0	Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0
LnGrp Delay(d),s/veh 25.9 37.3 31.0 25.3 34.9 29.8 14.7 22.0 38.0 16.0 18.7 17.2 LnGrp LOS C D C C C C C D C C C C D B C D B B C D B C D D C D S D S	%ile BackOfQ(50%),veh/In	1.5	6.1	3.0	1.3	5.5	2.4	2.6	6.6	12.0	0.7	1.9	0.4
LnGrp LOS C D C C C C C C C C D B B B A Approach Vol, veh/h 561 590 1444 239 A Approach Delay, s/veh 33.5 31.0 25.9 17.8 Approach LOS C C B B B B Approach LOS C C C B B B B Approach LOS C C C B B B B B B B B B B Approach LOS C C C B C D B B B B B B B B D	Unsig. Movement Delay, s/veh	I											
Approach Vol, veh/h 561 590 1444 239 Approach Delay, s/veh 33.5 31.0 25.9 17.8 Approach LOS C C C B Timer - Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 9.8 39.2 11.0 22.2 13.0 36.0 10.8 22.5 Change Period (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Green Setting (Gmax), s 5.0 32.0 5.0 24.0 7.0 30.0 6.0 23.0 Max Q Clear Time (g_c+I1), s 3.7 28.8 5.1 14.6 8.9 6.3 5.4 13.7 Green Ext Time (p_c), s 0.0 1.6 0.0 0.8 0.0 1.5 Intersection Summary 27.8 27.8 27.8 27.8 27.8 27.8	LnGrp Delay(d),s/veh	25.9	37.3	31.0	25.3	34.9	29.8	14.7	22.0	38.0	16.0	18.7	17.2
Approach Delay, s/veh 33.5 31.0 25.9 17.8 Approach LOS C C C B Timer - Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 9.8 39.2 11.0 22.2 13.0 36.0 10.8 22.5 Change Period (Y+Rc), s 6.0 6.3 5.4 13.7 Green Ext Time (p_c), s 0.0 1.6 0.0 1.6 0.0 1.5	LnGrp LOS	С	D	С	С	С	С	В	С	D	В	В	B
Approach LOS C C C C B Timer - Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 9.8 39.2 11.0 22.2 13.0 36.0 10.8 22.5 Change Period (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Green Setting (Gmax), s 5.0 32.0 5.0 24.0 7.0 30.0 6.0 23.0 Max Q Clear Time (g_c+I1), s 3.7 28.8 5.1 14.6 8.9 6.3 5.4 13.7 Green Ext Time (p_c), s 0.0 1.6 0.0 0.8 0.0 1.5 Intersection Summary 27.8 27.8 28 28 27.8	Approach Vol, veh/h		561			590			1444			239	
Timer - Assigned Phs 1 2 3 4 5 6 7 8 Phs Duration (G+Y+Rc), s 9.8 39.2 11.0 22.2 13.0 36.0 10.8 22.5 Change Period (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Green Setting (Gmax), s 5.0 32.0 5.0 24.0 7.0 30.0 6.0 23.0 Max Q Clear Time (g_c+I1), s 3.7 28.8 5.1 14.6 8.9 6.3 5.4 13.7 Green Ext Time (p_c), s 0.0 1.6 0.0 0.8 0.0 1.5 Intersection Summary 27.8 27.8 27.8 4.0	Approach Delay, s/veh		33.5			31.0			25.9			17.8	
Phs Duration (G+Y+Rc), s 9.8 39.2 11.0 22.2 13.0 36.0 10.8 22.5 Change Period (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 6.0 Max Green Setting (Gmax), s 5.0 32.0 5.0 24.0 7.0 30.0 6.0 23.0 Max Q Clear Time (g_c+I1), s 3.7 28.8 5.1 14.6 8.9 6.3 5.4 13.7 Green Ext Time (p_c), s 0.0 1.6 0.0 1.6 0.0 1.5 Intersection Summary Y7.8	Approach LOS		С			С			С			В	
Change Period (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 Max Green Setting (Gmax), s 5.0 32.0 5.0 24.0 7.0 30.0 6.0 23.0 Max Q Clear Time (g_c+l1), s 3.7 28.8 5.1 14.6 8.9 6.3 5.4 13.7 Green Ext Time (p_c), s 0.0 1.6 0.0 0.8 0.0 1.5 Intersection Summary Y HCM 6th Ctrl Delay 27.8	Timer - Assigned Phs	1	2	3	4	5	6	7	8				
Change Period (Y+Rc), s 6.0 6.0 6.0 6.0 6.0 6.0 Max Green Setting (Gmax), s 5.0 32.0 5.0 24.0 7.0 30.0 6.0 23.0 Max Q Clear Time (g_c+l1), s 3.7 28.8 5.1 14.6 8.9 6.3 5.4 13.7 Green Ext Time (p_c), s 0.0 1.6 0.0 0.8 0.0 1.5 Intersection Summary Y HCM 6th Ctrl Delay 27.8	Phs Duration (G+Y+Rc), s	9.8	39.2	11.0	22.2	13.0	36.0	10.8	22.5				
Max Green Setting (Gmax), s 5.0 32.0 5.0 24.0 7.0 30.0 6.0 23.0 Max Q Clear Time (g_c+l1), s 3.7 28.8 5.1 14.6 8.9 6.3 5.4 13.7 Green Ext Time (p_c), s 0.0 1.6 0.0 1.6 0.0 1.5 Intersection Summary 27.8 27.8 27.8 27.8 27.8				6.0			6.0						
Max Q Clear Time (g_c+l1), s 3.7 28.8 5.1 14.6 8.9 6.3 5.4 13.7 Green Ext Time (p_c), s 0.0 1.6 0.0 1.6 0.0 1.5 Intersection Summary Yes HCM 6th Ctrl Delay 27.8													
Green Ext Time (p_c), s 0.0 1.6 0.0 1.6 0.0 1.5 Intersection Summary 400 fth Ctrl Delay 27.8 400 fth													
HCM 6th Ctrl Delay 27.8													
HCM 6th Ctrl Delay 27.8	Intersection Summarv												
				27.8									
	HCM 6th LOS			C									

HCM 6th TWSC 6: Shea Dr & Severance Rd

Intersection							
Int Delay, s/veh	1.4						
Movement	EBT	EBR	WBL	WBT	NBL	NBR	2
Lane Configurations	ef.			ŧ	5	1	1
Traffic Vol, veh/h	883	48	3	557	39	31	
Future Vol, veh/h	883	48	3	557	39	31	
Conflicting Peds, #/hr	0	0	0	0	0	0)
Sign Control	Free	Free	Free	Free	Stop	Stop)
RT Channelized	-	None	-	None	-	None	;
Storage Length	-	-	-	-	0	150)
Veh in Median Storage	,# 0	-	-	0	0	-	-
Grade, %	0	-	-	0	0	-	-
Peak Hour Factor	100	100	100	100	100	100)
Heavy Vehicles, %	2	2	2	2	2	2	2
Mvmt Flow	883	48	3	557	39	31	

Major/Minor	Major1		Major2		Minor1	
Conflicting Flow All	0	0	931	0	1470	907
Stage 1	-	-	-	-	907	-
Stage 2	-	-	-	-	563	-
Critical Hdwy	-	-	4.12	-	6.42	6.22
Critical Hdwy Stg 1	-	-	-	-	5.42	-
Critical Hdwy Stg 2	-	-	-	-	5.42	-
Follow-up Hdwy	-	-	2.218	-	3.518	3.318
Pot Cap-1 Maneuver	-	-	735	-	140	334
Stage 1	-	-	-	-	394	-
Stage 2	-	-	-	-	570	-
Platoon blocked, %	-	-		-		
Mov Cap-1 Maneuve	r -	-	735	-	139	334
Mov Cap-2 Maneuve	r -	-	-	-	139	-
Stage 1	-	-	-	-	394	-
Stage 2	-	-	-	-	567	-

Approach	EB	WB	NB
HCM Control Delay, s	0	0.1	30.2
HCM LOS			D

Minor Lane/Major Mvmt	NBLn1	NBLn2	EBT	EBR	WBL	WBT
Capacity (veh/h)	139	334	-	-	735	-
HCM Lane V/C Ratio	0.281	0.093	-	-	0.004	-
HCM Control Delay (s)	40.7	16.9	-	-	9.9	0
HCM Lane LOS	E	С	-	-	А	А
HCM 95th %tile Q(veh)	1.1	0.3	-	-	0	-

HCM 6th TWSC 8: Dylan Ave & Severance Rd

Intersection						
Int Delay, s/veh	0.7					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	f,		7	•	Y	
Traffic Vol, veh/h	895	18	26	547	14	12
Future Vol, veh/h	895	18	26	547	14	12
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	120	-	0	-
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	100	100	100	100	100	100
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	895	18	26	547	14	12

Major/Minor	Major1	М	ajor2		Minor1							
Conflicting Flow All	0	0	913	0	1503	904						
Stage 1	-	-	-	-	904	-						
Stage 2	-	-	-	-	599	-						
Critical Hdwy	-	-	4.12	-	6.42	6.22						
Critical Hdwy Stg 1	-	-	-	-	5.42	-						
Critical Hdwy Stg 2	-	-	-	-	5.42	-						
Follow-up Hdwy	-	- 2	2.218	-	3.518	3.318						
Pot Cap-1 Maneuver	-	-	746	-	134	335						
Stage 1	-	-	-	-	395	-						
Stage 2	-	-	-	-	549	-						
Platoon blocked, %	-	-		-								
Mov Cap-1 Maneuve	r -	-	746	-	129	335						
Mov Cap-2 Maneuve	r -	-	-	-	129	-						
Stage 1	-	-	-	-	395	-						
Stage 2	-	-	-	-	530	-						

Approach	EB	WB	NB
HCM Control Delay, s	0	0.5	28.3
HCM LOS			D

Minor Lane/Major Mvmt	NBLn1	EBT	EBR	WBL	WBT
Capacity (veh/h)	180	-	-	746	-
HCM Lane V/C Ratio	0.144	-	-	0.035	-
HCM Control Delay (s)	28.3	-	-	10	-
HCM Lane LOS	D	-	-	В	-
HCM 95th %tile Q(veh)	0.5	-	-	0.1	-

Intersection: 3: US-2/7 & Blakely Rd/Severance Rd

Movement	EB	EB	EB	WB	WB	WB	WB	NB	NB	NB	NB	SB
Directions Served	L	Т	R	L	L	Т	R	L	L	Т	R	L
Maximum Queue (ft)	187	390	205	97	174	306	175	161	175	463	386	103
Average Queue (ft)	60	174	70	35	70	144	58	72	134	197	157	40
95th Queue (ft)	125	304	176	75	146	247	143	153	206	381	281	80
Link Distance (ft)		1478				1563				1316	1316	
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	180		180	150	150		150	150	150			150
Storage Blk Time (%)		8	0		0	6	0	0	2	10		
Queuing Penalty (veh)		20	0		0	19	0	1	7	45		

Intersection: 3: US-2/7 & Blakely Rd/Severance Rd

Movement	SB	SB
Directions Served	Т	R
Maximum Queue (ft)	152	102
Average Queue (ft)	74	20
95th Queue (ft)	133	61
Link Distance (ft)	1264	
Upstream Blk Time (%)		
Queuing Penalty (veh)		
Storage Bay Dist (ft)		150
Storage Blk Time (%)	1	0
Queuing Penalty (veh)	0	0

Intersection: 6: Shea Dr & Severance Rd

Mayamont	EB		ND	ND
Movement	ED	WB	NB	NB
Directions Served	TR	LT	L	R
Maximum Queue (ft)	4	125	97	56
Average Queue (ft)	0	6	28	22
95th Queue (ft)	3	54	70	50
Link Distance (ft)	1563	283	317	
Upstream Blk Time (%)		0		
Queuing Penalty (veh)		0		
Storage Bay Dist (ft)				150
Storage Blk Time (%)			0	
Queuing Penalty (veh)			0	

Intersection: 8: Dylan Ave & Severance Rd

Movement	EB	WB	NB
Directions Served	TR	L	LR
Maximum Queue (ft)	4	39	61
Average Queue (ft)	0	11	18
95th Queue (ft)	3	36	48
Link Distance (ft)	283		320
Upstream Blk Time (%)			
Queuing Penalty (veh)			
Storage Bay Dist (ft)		120	
Storage Blk Time (%)			
Queuing Penalty (veh)			

Network Summary

Network wide Queuing Penalty: 93